Skip to main navigation menu Skip to main content Skip to site footer

Spatial Proteomics Imaging to Decode Disease Progression: A Perspective on Tumor Microenvironments

Abstract

Protein spatial imaging, rooted in spatial proteomics, enables the localization of proteins within their native environment, thus preserving structural and functional context. Its integration into cancer research has provided insights into tumor progression, especially in breast cancer, where ductal carcinoma in situ (DCIS) may transition into invasive breast cancer (IBC). Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) has emerged as a powerful method to visualize protein distribution, tumor–stroma interactions, and immune cell dynamics. Evidence indicates that the tumor microenvironment (TME)—including stromal architecture, extracellular matrix (ECM), and immune cell infiltration—plays a central role in malignant progression. Here, we highlight recent advances in protein spatial imaging, discuss optimization strategies, and examine its implications for breast cancer progression and other diseases.

PDF

References

  1. Banworth, M. J., & Li, G. (2018). Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases, 9(1–2), 158–181. https://doi.org/10.1080/21541248.2017.1397833
  2. Baranski, A., Milo, I., Greenbaum, S., Oliveria, J.-P., Mrdjen, D., Angelo, M., & Keren, L. (2021). MAUI (MBI analysis user interface)—An image processing pipeline for multiplexed mass‑based imaging. PLoS Computational Biology, 17(4), e1008887. https://doi.org/10.1371/journal.pcbi.1008887
  3. Bergholtz, H., Norum, J. H., Lien, T. G., Skrede, M. L., Garred, Ø., & Sørlie, T. (2025). B cells and energy metabolism in HER2‑positive DCIS: Insights into breast cancer progression from spatial‑omics analyses. Breast Cancer Research, 27(1), 44. https://doi.org/10.1186/s13058-025-01990-2
  4. Brožová, K., Hantusch, B., Kenner, L., & Kratochwill, K. (2023). Spatial proteomics for the molecular characterization of breast cancer. Proteomes, 11(2), 17. https://doi.org/10.3390/proteomes11020017
  5. Chen, S., Zhang, Y., Li, X., Zhang, Y., & Zeng, Y. (2025). Driving innovations in cancer research through spatial metabolomics: A bibliometric review of trends and hotspot. Frontiers in Immunology, 16, 1589943. https://doi.org/10.3389/fimmu.2025.1589943
  6. Čuklina, J., Lee, C. H., Williams, E. G., Sajic, T., Collins, B. C., Rodríguez Martínez, M., … Pedrioli, P. G. A. (2021). Diagnostics and correction of batch effects in large‑scale proteomic studies: A tutorial. Molecular Systems Biology, 17(8), e10240. https://doi.org/10.15252/msb.202110240
  7. Dong, Z., Jiang, W., Wu, C., Chen, T., Chen, J., Ding, X., … Guo, T. (2024). Spatial proteomics of single cells and organelles on tissue slides using filter‑aided expansion proteomics. Nature Communications, 15(1), 9378. https://doi.org/10.1038/s41467-024-53683-7
  8. Ferrian, S., Liu, C. C., McCaffrey, E. F., Kumar, R., Nowicki, T. S., Dawson, D. W., … Angelo, M. (2021). Multiplexed imaging reveals an IFN‑γ‑driven inflammatory state in nivolumab‑associated gastritis. Cell Reports Medicine, 2(10), 100419. https://doi.org/10.1016/j.xcrm.2021.100419
  9. Gnann, C., Cesnik, A. J., & Lundberg, E. (2021). Illuminating non‑genetic cellular heterogeneity with imaging‑based spatial proteomics. Trends in Cancer, 7(4), 278–282. https://doi.org/10.1016/j.trecan.2020.12.006
  10. Granat, L. M., Kambhampati, O., Klosek, S., Niedzwecki, B., Parsa, K., & Zhang, D. (2019). The promises and challenges of patient‑derived tumor organoids in drug development and precision oncology. Animal Models and Experimental Medicine, 2(3), 150–161. https://doi.org/10.1002/ame2.12077
  11. Greenwald, N. F., Miller, G., Moen, E., Kong, A., Kagel, A., Dougherty, T., … Van Valen, D. (2022). Whole‑cell segmentation of tissue images with human‑level performance using large‑scale data annotation and deep learning. Nature Biotechnology, 40(4), 555–565. https://doi.org/10.1038/s41587-021-01094-0
  12. Hu, Y., Jia, H., Cui, H., & Song, J. (2025). Application of spatial omics in the cardiovascular system. Research, 8, 0628. https://doi.org/10.34133/research.0628
  13. Keren, L., Bosse, M., Thompson, S., Risom, T., Vijayaragavan, K., McCaffrey, E., … Angelo, M. (2019). MIBI‑TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Science Advances, 5(10), e aax5851. https://doi.org/10.1126/sciadv.aax5851
  14. Lundberg, E., & Borner, G. H. H. (2019). Spatial proteomics: A powerful discovery tool for cell biology. Nature Reviews Molecular Cell Biology, 20(5), 285–302. https://doi.org/10.1038/s41580-018-0094-y
  15. McCaffrey, E. F., Donato, M., Keren, L., Chen, Z., Delmastro, A., Fitzpatrick, M. B., … Angelo, M. (2022). The immunoregulatory landscape of human tuberculosis granulomas. Nature Immunology, 23(2), 318–329. https://doi.org/10.1038/s41590-021-01121-x
  16. Mou, M., Pan, Z., Lu, M., Sun, H, Wang, Y., Luo, Y., & Zhu, F. (2022). Application of machine learning in spatial proteomics. Journal of Chemical Information and Modeling, 62(23), 5875–5895. https://doi.org/10.1021/acs.jcim.2c01161
  17. Mrdjen, D., Amouzgar, M., Cannon, B., Liu, C., Spence, A., McCaffrey, E., … Bendall, S. C. (2023). Spatial proteomics reveals human microglial states shaped by anatomy and neuropathology. Research Square. https://doi.org/10.21203/rs.3.rs-2987263/v1
  18. Palla, G., Fischer, D. S., Regev, A., & Theis, F. J. (2022). Spatial components of molecular tissue biology. Nature Biotechnology, 40(3), 308–318. https://doi.org/10.1038/s41587-021-01182-1
  19. Pinto, G., Alhaiek, A. A. M., & Godovac‑Zimmermann, J. (2015). Proteomics reveals the importance of the dynamic redistribution of the subcellular location of proteins in breast cancer cells. Expert Review of Proteomics, 12(1), 61–74. https://doi.org/10.1586/14789450.2015.1002474
  20. Quintelier, K., Couckuyt, A., Emmaneel, A., Aerts, J., Saeys, Y., & Van Gassen, S. (2021). Analyzing high‑dimensional cytometry data using FlowSOM. Nature Protocols, 16(8), 3775–3801. https://doi.org/10.1038/s41596-021-00550-0
  21. Rehman, I., & Botelho, S. (2024, May 25). Biochemistry, tertiary protein structure. National Center for Biotechnology Information. https://www.ncbi.nlm.nih.gov/books/NBK470269/
  22. Risom, T., Glass, D. R., Averbukh, I., Liu, C. C., Baranski, A., Kagel, A., … Angelo, M. (2022). Transition to invasive breast cancer is associated with progressive changes in the structure and composition of tumor stroma. Cell, 185(2), 299–310.e18. https://doi.org/10.1016/j.cell.2021.12.023
  23. Siragusa, G., Brandi, J., Rawling, T., Murray, M., & Cecconi, D. (2024). Triphenylphosphonium‑conjugated palmitic acid for mitochondrial targeting of pancreatic cancer cells: Proteomic and molecular evidence. International Journal of Molecular Sciences, 25(12), 6790. https://doi.org/10.3390/ijms25126790
  24. Vijayaragavan, K., Cannon, B. J., Tebaykin, D., Bossé, M., Baranski, A., Oliveria, J. P., … Bendall, S. C. (2022). Single‑cell spatial proteomic imaging for human neuropathology. Acta Neuropathologica Communications, 10(1), 158. https://doi.org/10.1186/s40478-022-01465-x
  25. Xu, Z., Wang, Y., Xie, T., Luo, R., Ni, H.‑L., Xiang, H., … Ding, C. (2025). Panoramic spatial enhanced resolution proteomics (PSERP) reveals tumor architecture and heterogeneity in gliomas. Journal of Hematology & Oncology, 18(1), 58. https://doi.org/10.1186/s13045-025-01710-5
  26. Zhao, B., Shi, W., Chao, H., Yang, Z., Zhang, Y., Song, M., & Jiang, T. (2025). Neural proteomics fields for super‑resolved spatial proteomics prediction. arXiv. https://doi.org/10.48550/arXiv.2508.17389