Skip to main navigation menu Skip to main content Skip to site footer

PBX/Knotted 1 homeobox 2 as a novel prognostic marker that dysregulated in lung adenocarcinoma

Abstract

Homeobox-containing genes are evolutionary conserved regulators that play important roles in embryogenesis and tumorigenesis. We started by searching differentially expressed (DE) homeobox-containing genes in lung adenocarcinoma datasets and obtained 14 candidates from a total of 238 distinct members. Using univariant Cox and lasso regression, we created a 6 DE-homeobox-containing gene-based model that successfully predicted overall survival, disease-free time survival, and progression-free intervals in LUAD patients. Following that, we notice that PKNOX2 (PBX/Knotted 1 Homeobox 2) is the most potent protective factor for overall survival of LUAD patients. Its expression was significantly downregulated in LUAD and decreased as tumor pathological grade increased. PKNOX2 was as an independent prognostic marker in LUAD in univariate and multivariate Cox proportional and further confirmed in Kaplan-Meier survival analyses. Gene Set Enrichment Analysis (GSEA) results revealed that PKNOX2 related genes were enriched in immune response as well as extracellular matrix organization. Further we revealed that PKNOX2 was linked to tumor purity and macrophage filtrations. Since previous studies suggested that PKNOX2 play a tumor suppressive role in gastric cancer, however its pathological role in LUAD is unknown. These findings suggest that PKNOX2 dysregulation may play a role in the development of LUAD tumors and could be used as a novel prognostic marker for LUAD patients.

Keywords

PBX/Knotted 1 homeobox 2, Lung Adenocarcinoma, Homeobox Genes, Prognostic Marker

PDF

References

  1. Abate-Shen, C. (2002). Deregulated homeobox gene expression in cancer: Cause or consequence? Nature Reviews Cancer, 2(10), 777-785. https://doi.org/10.1038/nrc907
  2. Ban, K., Wile, B., Cho, K. W., et al. (2015). Non-genetic purification of ventricular cardiomyocytes from differentiating embryonic stem cells through molecular beacons targeting IRX-4. Stem Cell Reports, 5(6), 1239-1249. https://doi.org/10.1016/j.stemcr.2015.10.011
  3. Barrett, T., Wilhite, S. E., Ledoux, P., et al. (2013). NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Research, 41(Database issue), D991-D995. https://doi.org/10.1093/nar/gks1193
  4. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394-424. https://doi.org/10.3322/caac.21492
  5. Cancer Genome Atlas Research Network. (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511), 543-550. https://doi.org/10.1038/nature13385
  6. Chakma, K., Gu, Z., Abudurexiti, Y., et al. (2020). Epigenetic inactivation of IRX4 is responsible for acceleration of cell growth in human pancreatic cancer. Cancer Science, 111(12), 4594-4604. https://doi.org/10.1111/cas.14679
  7. Chandrashekar, D. S., Bashel, B., Balasubramanya, S. A. H., et al. (2017). UALCAN: A portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia, 19(8), 649-658. https://doi.org/10.1016/j.neo.2017.05.002
  8. Chen, Y., Knösel, T., Ye, F., Pacyna-Gengelbach, M., Deutschmann, N., & Petersen, I. (2007). Decreased PITX1 homeobox gene expression in human lung cancer. Lung Cancer, 55(3), 287-294. https://doi.org/10.1016/j.lungcan.2006.10.016
  9. Chen, Y., Lun, A. T., & Smyth, G. K. (2016). From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research, 5, 1438. https://doi.org/10.12688/f1000research.8987.2
  10. Chen, Z., Fillmore, C. M., Hammerman, P. S., Kim, C. F., & Wong, K. K. (2014). Non-small-cell lung cancers: A heterogeneous set of diseases. Nature Reviews Cancer, 14(8), 535-546. https://doi.org/10.1038/nrc3775
  11. Christoffels, V. M., Keijser, A. G., Houweling, A. C., Clout, D. E., & Moorman, A. F. (2000). Patterning the embryonic heart: Identification of five mouse Iroquois homeobox genes in the developing heart. Developmental Biology, 224(2), 263-274. https://doi.org/10.1006/dbio.2000.9801
  12. Cillo, C., Faiella, A., Cantile, M., & Boncinelli, E. (1999). Homeobox genes and cancer. Experimental Cell Research, 248(1), 1-9. https://doi.org/10.1006/excr.1999.4452
  13. De Langhe, S. P., Carraro, G., Tefft, D., et al. (2008). Formation and differentiation of multiple mesenchymal lineages during lung development is regulated by beta-catenin signaling. PLoS ONE, 3(1), e1516. https://doi.org/10.1371/journal.pone.0001516
  14. Dietrich, D., Hasinger, O., Liebenberg, V., Field, J. K., Kristiansen, G., & Soltermann, A. (2012). DNA methylation of the homeobox genes PITX2 and SHOX2 predicts outcome in non-small-cell lung cancer patients. Diagnostic Molecular Pathology, 21(2), 93-104. https://doi.org/10.1097/PDM.0b013e318240503e
  15. Doi, T., Lukošiūtė, A., Ruttenstock, E., Dingemann, J., & Puri, P. (2011). Expression of Iroquois genes is up-regulated during early lung development in the nitrofen-induced pulmonary hypoplasia. Journal of Pediatric Surgery, 46(1), 62-66. https://doi.org/10.1016/j.jpedsurg.2010.09.069
  16. El-Hashash, A. H., Al Alam, D., Turcatel, G., et al. (2011). Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Developmental Biology, 353(2), 242-258. https://doi.org/10.1016/j.ydbio.2011.02.028
  17. Feijóo, C. G., Saldias, M. P., De la Paz, J. F., Gómez-Skarmeta, J. L., & Allende, M. L. (2009). Formation of posterior cranial placode derivatives requires the Iroquois transcription factor irx4a. Molecular and Cellular Neurosciences, 40(3), 328-337. https://doi.org/10.1016/j.mcn.2008.11.005
  18. Gillette, M. A., Satpathy, S., Cao, S., et al. (2020). Proteogenomic characterization reveals therapeutic vulnerabilities in lung adenocarcinoma. Cell, 182(1), 200-225.e35. https://doi.org/10.1016/j.cell.2020.06.013
  19. Goldman, M. J., Craft, B., Hastie, M., et al. (2020). Visualizing and interpreting cancer genomics data via the Xena platform. Nature Biotechnology, 38(6), 675-678. https://doi.org/10.1038/s41587-020-0546-0
  20. Hou, J., Aerts, J., den Hamer, B., et al. (2010). Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS ONE, 5(4), e10312. https://doi.org/10.1371/journal.pone.0010312
  21. Howlader, N., Forjaz, G., Mooradian, M. J., Meza, R., Kong, C. Y., Cronin, K. A., Mariotto, A. B., Lowy, D. R., & Feuer, E. J. (2020). The effect of advances in lung-cancer treatment on population mortality. The New England Journal of Medicine, 383(7), 640-649. https://doi.org/10.1056/NEJMoa1916623
  22. Huang, S., Lin, W., Wang, L., et al. (2022). SIX1 predicts poor prognosis and facilitates the progression of non-small lung cancer via activating the Notch signaling pathway. Journal of Cancer, 13(2), 527-540. https://doi.org/10.7150/jca.66358
  23. Karlsson, M., Zhang, C., Méar, L., et al. (2021). A single-cell type transcriptomics map of human tissues. Science Advances, 7(31), eabh2169. https://doi.org/10.1126/sciadv.abh2169
  24. Kim, B. N., Ahn, D. H., Kang, N., et al. (2020). TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Scientific Reports, 10(1), 10597. https://doi.org/10.1038/s41598-020-67325-7
  25. Küster, M. M., Schneider, M. A., Richter, A. M., et al. (2020). Epigenetic inactivation of the tumor suppressor IRX1 occurs frequently in lung adenocarcinoma and its silencing is associated with impaired prognosis. Cancers, 12(12), 3528. https://doi.org/10.3390/cancers12123528
  26. Lánczky, A., & Győrffy, B. (2021). Web-based survival analysis tool tailored for medical research (KMplot): Development and implementation. Journal of Medical Internet Research, 23(7), e27633. https://doi.org/10.2196/27633
  27. Lin, C. R., Kioussi, C., O'Connell, S., et al. (1999). Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature, 401(6750), 279-282. https://doi.org/10.1038/45795
  28. Luo, J., Yao, Y., Ji, S., et al. (2019). PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell International, 19, 96. https://doi.org/10.1186/s12935-019-0800-7
  29. Maeda, Y., Davé, V., & Whitsett, J. A. (2007). Transcriptional control of lung morphogenesis. Physiological Reviews, 87(1), 219-244. https://doi.org/10.1152/physrev.00028.2006
  30. Maeda, Y., Tsuchiya, T., Hao, H., et al. (2012). Kras(G12D) and Nkx2-1 haploinsufficiency induce mucinous adenocarcinoma of the lung. The Journal of Clinical Investigation, 122(12), 4388-4400. https://doi.org/10.1172/JCI64048
  31. Mark, M., Rijli, F. M., & Chambon, P. (1997). Homeobox genes in embryogenesis and pathogenesis. Pediatric Research, 42(4), 421-429. https://doi.org/10.1203/00006450-199710000-00001
  32. McDonald, L. A., Gerrelli, D., Fok, Y., Hurst, L. D., & Tickle, C. (2010). Comparison of Iroquois gene expression in limbs/fins of vertebrate embryos. Journal of Anatomy, 216(6), 683-691. https://doi.org/10.1111/j.1469-7580.2010.01229.x
  33. Mistry, J., Chuguransky, S., Williams, L., et al. (2021). Pfam: The protein families database in 2021. Nucleic Acids Research, 49(D1), D412-D419. https://doi.org/10.1093/nar/gkaa913
  34. Mummenhoff, J., Houweling, A. C., Peters, T., Christoffels, V. M., & Rüther, U. (2001). Expression of Irx6 during mouse morphogenesis. Mechanisms of Development, 103(1-2), 193-195. https://doi.org/10.1016/S0925-4773(01)00343-9
  35. Nakamura, T., Nakagawa, M., Ichisaka, T., Shiota, A., & Yamanaka, S. (2011). Essential roles of ECAT15-2/Dppa2 in functional lung development. Molecular and Cellular Biology, 31(21), 4366-4378. https://doi.org/10.1128/MCB.05701-11
  36. Ostrin, E. J., Little, D. R., Gerner-Mauro, K. N., et al. (2018). β-Catenin maintains lung epithelial progenitors after lung specification. Development, 145(5), dev160788. https://doi.org/10.1242/dev.160788
  37. Otasek, D., Morris, J. H., Bouças, J., Pico, A. R., & Demchak, B. (2019). Cytoscape Automation: Empowering workflow-based network analysis. Genome Biology, 20(1), 185. https://doi.org/10.1186/s13059-019-1758-4
  38. Sanchez-Palencia, A., Gomez-Morales, M., Gomez-Capilla, J. A., et al. (2011). Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. International Journal of Cancer, 129(2), 355-364. https://doi.org/10.1002/ijc.25718
  39. Selamat, S. A., Chung, B. S., Girard, L., et al. (2012). Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression. Genome Research, 22(7), 1197-1211. https://doi.org/10.1101/gr.132662.111
  40. Seo, J. S., Ju, Y. S., Lee, W. C., et al. (2012). The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Research, 22(11), 2109-2119. https://doi.org/10.1101/gr.145144.112
  41. Sher, T., Dy, G. K., & Adjei, A. A. (2008). Small cell lung cancer. Mayo Clinic Proceedings, 83(3), 355-367. https://doi.org/10.4065/83.3.355
  42. Tang, Z., Li, C., Kang, B., Gao, G., Li, C., & Zhang, Z. (2017). GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1), W98-W102. https://doi.org/10.1093/nar/gkx247
  43. Tran, T. Q., & Kioussi, C. (2021). Pitx genes in development and disease. Cellular and Molecular Life Sciences, 78(11), 4921-4938. https://doi.org/10.1007/s00018-021-03804-1
  44. Uhlén, M., Fagerberg, L., Hallström, B. M., et al. (2015). Proteomics. Tissue-based map of the human proteome. Science, 347(6220), 1260419. https://doi.org/10.1126/science.1260419
  45. Uhlen, M., Zhang, C., Lee, S., et al. (2017). A pathology atlas of the human cancer transcriptome. Science, 357(6352), eaan2507. https://doi.org/10.1126/science.aan2507
  46. Varma, S., Cao, Y., Tagne, J. B., et al. (2012). The transcription factors Grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation. The Journal of Biological Chemistry, 287(44), 37282-37295. https://doi.org/10.1074/jbc.M112.408401
  47. Vasaikar, S. V., Straub, P., Wang, J., & Zhang, B. (2018). LinkedOmics: Analyzing multi-omics data within and across 32 cancer types. Nucleic Acids Research, 46(D1), D956-D963. https://doi.org/10.1093/nar/gkx1090
  48. Yu, W., Li, X., Eliason, S., et al. (2017). Irx1 regulates dental outer enamel epithelial and lung alveolar type II epithelial differentiation. Developmental Biology, 429(1), 44-55. https://doi.org/10.1016/j.ydbio.2017.07.008
  49. Zhang, C., Chen, X., Chen, Y., et al. (2021). The PITX gene family as potential biomarkers and therapeutic targets in lung adenocarcinoma. Medicine (Baltimore), 100(4), e23936. https://doi.org/10.1097/MD.0000000000023936
  50. Zhong, Y. F., Butts, T., & Holland, P. W. (2008). HomeoDB: A database of homeobox gene diversity. Evolutionary Development, 10(5), 516-518. https://doi.org/10.1111/j.1525-142X.2008.00266.x
  51. Zhong, Y. F., & Holland, P. W. (2011). HomeoDB2: Functional expansion of a comparative homeobox gene database for evolutionary developmental biology. Evolutionary Development, 13(6), 567-568. https://doi.org/10.1111/j.1525-142X.2011.00506.x