Skip to main navigation menu Skip to main content Skip to site footer

A Spatial Equilibrium Evaluation Method of Water Resource Allocation: Case Study of the South-to-North Water Diversion Project in China

Abstract

Research on the spatial equilibrium of water resource allocation in China can inform the scientific planning of future water diversion projects, supporting water security and the sustainable development of socio-economic systems. Yet studies on spatial equilibrium remain limited. We developed an evaluation method for spatial equilibrium in water resource allocation and conducted regional validation using the South-to-North Water Diversion (SNWD) project. Based on general and spatial equilibrium theory, spatial equilibrium is defined as the equalisation of marginal benefits of water use when interregional water transfer costs are considered. Regions with higher marginal benefits are mainly located east of the “Hu Huanyong Line”, particularly Shandong, Henan, and Shaanxi. When project information is available, unit water diver-sion costs can be expressed as a function of delivery distance. Estimated unit costs range from 0.51–3.76 RMB/m³ along the East Route, 0.39–1.49 RMB/ m³ along the Mid Route, and 1.80–4.45 RMB/m³ along the West Route. Link-ing Xuzhou (East Route), Zhengzhou (Mid Route), and Aba Prefecture (West Route) yields a projected spatial equilibrium boundary for eastern China. Further research on marginal benefits, water use costs, and dynamic updates is still needed.

Keywords

spatial equilibrium evaluation method, water resource allocation, cost-benefit analysis, unit cost of water diversion projects, South-to-North Water Diversion Project (SNWD)

PDF

References

  1. Berrittella, M., Hoekstra, A. Y., Rehdanz, K., Roson, R., & Tol, R. S. J. (2007). The economic impact of restricted water supply: A computable general equilibrium analysis. Water Research, 41(8), 1799–1813. https://doi.org/10.1016/j.watres.2007.01.010 DOI: https://doi.org/10.1016/j.watres.2007.01.010
  2. Bian, D., Yang, X., Wu, F., Babuna, P., Luo, Y., Wang, B., & Chen, Y. (2022). A three-stage hybrid model investigating regional evaluation, pattern analysis and obstruction factor analysis for water resource spatial equilibrium in China. Journal of Cleaner Production, 331, 129940. https://doi.org/10.1016/j.jclepro.2021.129940 DOI: https://doi.org/10.1016/j.jclepro.2021.129940
  3. Cai, W. J., Jiang, X. H., Sun, H. T., Lei, Y. X., Nie, T., & Li, L. C. (2023). Spatial scale effect of irrigation efficiency paradox based on water accounting framework in Heihe River Basin, Northwest China. Agricultural Water Management, 277. https://doi.org/10.1016/j.agwat.2022.108118 DOI: https://doi.org/10.1016/j.agwat.2022.108118
  4. Changming, L. (1998). Environmental Issues and the South North Water Transfer Scheme. The China Quarterly, 156, 899–910. https://doi.org/10.1017/S0305741000051389 DOI: https://doi.org/10.1017/S0305741000051389
  5. Chen, Y., Zhang, R. Z., Dehghanifarsani, L., & Amani-Beni, M. (2025). Dynamics and Drivers of Ecosystem Service Values in the Qionglai-Daxiangling Region of China’s Giant Panda National Park (1990-2020). Systems, 13(9). https://doi.org/10.3390/systems13090807 DOI: https://doi.org/10.3390/systems13090807
  6. Chen, Z., Yuan, J., Sun, F., Zhang, F., Chen, Y., Ding, C., Shi, J., Li, Y., & Yao, L. (2018). Planktonic fungal community structures and their relationship to water quality in the Danjiangkou Reservoir, China. Scientific Reports, 8(1), 10596. https://doi.org/10.1038/s41598-018-28903-y DOI: https://doi.org/10.1038/s41598-018-28903-y
  7. Dai, C., Qin, X. S., Chen, Y., & Guo, H. C. (2018). Dealing with equality and benefit for water allocation in a lake watershed: A Gini-coefficient based stochastic optimization approach. Journal of Hydrology, 561, 322–334. https://doi.org/10.1016/j.jhydrol.2018.04.012 DOI: https://doi.org/10.1016/j.jhydrol.2018.04.012
  8. Dong, T., Wei, Y. Q., Jin, J. L., Zhou, P., Hu, Y., Chen, M. L., & Zhou, Y. L. (2025). Evaluation and Diagnosis of Water Resources Spatial Equilibrium Under the High-Quality Development of Water Conservancy. Journal of the American Water Resources Association, 61(2). https://doi.org/10.1111/1752-1688.70014 DOI: https://doi.org/10.1111/1752-1688.70014
  9. Du, W., Fan, Y., Liu, X., Park, S. C., & Tang, X. (2019). A game-based production operation model for water resource management: An analysis of the South-to-North Water Transfer Project in China. Journal of Cleaner Production, 228, 1482–1493. https://doi.org/10.1016/j.jclepro.2019.04.351 DOI: https://doi.org/10.1016/j.jclepro.2019.04.351
  10. Flinn, J. C., & Guise, J. W. B. (1970). An Application of Spatial Equilibrium Analysis to Water Resource Allocation. Water Resources Research, 6(2), 398–409. https://doi.org/10.1029/WR006i002p00398 DOI: https://doi.org/10.1029/WR006i002p00398
  11. Grafton, R. Q., Williams, J., Perry, C. J., Molle, F., Ringler, C., Steduto, P., Udall, B., Wheeler, S. A., Wang, Y., Garrick, D., & Allen, R. G. (2018). The paradox of irrigation efficiency. Science, 361(6404), 748–750. https://doi.org/10.1126/science.aat9314 DOI: https://doi.org/10.1126/science.aat9314
  12. Hoekstra, A. Y., & Mekonnen, M. M. (2012). Reply to Ridoutt and Huang: From water footprint assessment to policy. Proceedings of the National Academy of Sciences of the United States of America, 109(22), E1425–E1425. https://doi.org/10.1073/pnas.1205186109 DOI: https://doi.org/10.1073/pnas.1205186109
  13. Ilyas, A., Manzoor, T., & Muhammad, A. (2021). A Dynamic Socio-Hydrological Model of the Irrigation Efficiency Paradox. Water Resources Research, 57(12). https://doi.org/10.1029/2021WR029783 DOI: https://doi.org/10.1029/2021WR029783
  14. Jia, J. W., Bing, J. P., & Liang, Z. M. (2019). Study on benefits evaluation of water diversion project: Case study in water transfer from the Yangtze River to Lake Taihu. 5th International Conference on Water Resource and Environment (Wre 2019), 344. https://doi.org/10.1088/1755-1315/344/1/012120 DOI: https://doi.org/10.1088/1755-1315/344/1/012120
  15. Ju, Y. S., Sun, Y. Y., Ning, W. Q., Li, Q. G., Lin, Y. Y., Chen, H., & Yang, S. X. (2024). Cost Apportionment Method for Transmission and Distribution Projects Based on Multiple Apportionment Factors. Sustainability, 16(20). https://doi.org/10.3390/su16208844 DOI: https://doi.org/10.3390/su16208844
  16. Lankford, B. A. (2023). Resolving the paradoxes of irrigation efficiency: Irrigated systems accounting analyses depletion-based water conservation for reallocation. Agricultural Water Management, 287. https://doi.org/10.1016/j.agwat.2023.108437 DOI: https://doi.org/10.1016/j.agwat.2023.108437
  17. Li, F., Du, J. E., Huang, X., Xu, X. Y., Gao, J. Y., & Luo, Z. Y. (2025). Spatial equilibrium evaluation of water resources in the water-receiving area of the central route of the South-to-North water diversion project in Henan province. Water Science and Technology, 92(7), 1021–1049. https://doi.org/10.2166/wst.2025.143 DOI: https://doi.org/10.2166/wst.2025.143
  18. Liang, H., Qin, W., Hu, K., Tao, H., & Li, B. (2019). Modelling groundwater level dynamics under different cropping systems and developing groundwater neutral systems in the North China Plain. Agricultural Water Management, 213, 732–741. https://doi.org/10.1016/j.agwat.2018.11.022 DOI: https://doi.org/10.1016/j.agwat.2018.11.022
  19. Lou, Y. Q., Qiu, Q. T., Zhang, M. T., Feng, Z. L., & Dong, J. (2023). Spatial Equilibrium Evaluation of the Water Resources in Tai’an City Based on the Lorenz Curve and Correlation Number. Water, 15(14). https://doi.org/10.3390/w15142617 DOI: https://doi.org/10.3390/w15142617
  20. Lyu, H. D., Xing, H. F., & Duan, T. X. (2024). Optimizing Water Resource Allocation for Food Security: An Evaluation of China’s Water Rights Trading Policy. Sustainability, 16(23). https://doi.org/10.3390/su162310443 DOI: https://doi.org/10.3390/su162310443
  21. Ni, Y. K., & Chen, Y. (2024). Does the implementation sequence of adaptive management countermeasures affect the collaborative security of the water-energy-food nexus? A case study in the Yangtze River Economic Belt. Ecological Indicators, 163. https://doi.org/10.1016/j.ecolind.2024.112090 DOI: https://doi.org/10.1016/j.ecolind.2024.112090
  22. Niu, C., Chang, J., Wang, Y., Shi, X., Wang, X., Guo, A., Jin, W., & Zhou, S. (2022). A Water Resource Equilibrium Regulation Model Under Water Resource Utilization Conflict: A Case Study in the Yellow River Basin. Water Resources Research, 58(6), e2021WR030779. https://doi.org/10.1029/2021WR030779 DOI: https://doi.org/10.1029/2021WR030779
  23. Okamoto, S., Hayashi, M., Nakajima, M., Kainuma, Y., & Shiozawa, K. (1990). A Factor-Analysis Multiple-Regression Model for Source Apportionment of Suspended Particulate Matter. Atmospheric Environment Part A-General Topics, 24(8), 2089–2097. https://doi.org/10.1016/0960-1686(90)90242-F DOI: https://doi.org/10.1016/0960-1686(90)90242-F
  24. Peng, Z. Y., Yin, J. X., Zhang, L. L., Zhao, J., Liang, Y., & Wang, H. (2020). Assessment of the Socio-Economic Impact of a Water Diversion Project for a Water-Receiving Area. Polish Journal of Environmental Studies, 29(2), 1771–1784. https://doi.org/10.15244/pjoes/109026 DOI: https://doi.org/10.15244/pjoes/109026
  25. Pohlner, H. (2016). Institutional change and the political economy of water megaprojects: China’s south-north water transfer. Global Environmental Change, 38, 205–216. https://doi.org/10.1016/j.gloenvcha.2016.03.015 DOI: https://doi.org/10.1016/j.gloenvcha.2016.03.015
  26. Rockström, J., Falkenmark, M., Allan, T., Folke, C., Gordon, L., Jägerskog, A., Kummu, M., Lannerstad, M., Meybeck, M., Molden, D., Postel, S., Savenije, H. H. G., Svedin, U., Turton, A., & Varis, O. (2014). The unfolding water drama in the Anthropocene: Towards a resilience-based perspective on water for global sustainability. Ecohydrology, 7(5), 1249–1261. https://doi.org/10.1002/eco.1562 DOI: https://doi.org/10.1002/eco.1562
  27. Shi, C. F., Shang, T., Zhi, J. Q., & Na, X. H. (2023). Research on the impact of China’s new urbanization on industrial water utilization efficiency—Based on spatial spillover effects and threshold characteristics. Water Science and Technology, 87(8), 1832–1852. https://doi.org/10.2166/wst.2023.104 DOI: https://doi.org/10.2166/wst.2023.104
  28. Tu, J., & Xia, Z.-G. (2008). Examining spatially varying relationships between land use and water quality using geographically weighted regression I: Model design and evaluation. Science of The Total Environment, 407(1), 358–378. https://doi.org/10.1016/j.scitotenv.2008.09.031 DOI: https://doi.org/10.1016/j.scitotenv.2008.09.031
  29. Xia, F., Guo, H., Wang, Y., Yan, D., Yang, C., Wan, F., Yang, L., Cao, X., & Xie, Z. (2025). Spatial equilibrium of water and land resources under water constraints: Historical and future modes in Henan Province, Yellow River Basin. Journal of Hydrology, 663, 133970. https://doi.org/10.1016/j.jhydrol.2025.133970 DOI: https://doi.org/10.1016/j.jhydrol.2025.133970
  30. Ye, A., Duan, Q., Chu, W., Xu, J., & Mao, Y. (2014). The impact of the South–North Water Transfer Project (CTP)’s central route on groundwater table in the Hai River basin, North China. Hydrological Processes, 28(23), 5755–5768. https://doi.org/10.1002/hyp.10081 DOI: https://doi.org/10.1002/hyp.10081
  31. Yin, Y. Y., Wang, L., Wang, Z. J., Tang, Q. H., Piao, S. L., Chen, D. L., Xia, J., Conradt, T., Liu, J. G., Wada, Y., Cai, X. M., Xie, Z. H., Duan, Q. Y., Li, X. P., Zhou, J., & Zhang, J. Y. (2020). Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and South-to-North Water Diversion. Earths Future, 8(8). https://doi.org/10.1029/2020EF001492 DOI: https://doi.org/10.1029/2020EF001492
  32. Young, H. P., Okada, N., & Hashimoto, T. (1982). Cost Allocation in Water-Resources Development. Water Resources Research, 18(3), 463–475. https://doi.org/10.1029/WR018i003p00463 DOI: https://doi.org/10.1029/WR018i003p00463
  33. Yu, E. R., Li, Y., Li, F., He, C. Y., & Feng, X. H. (2024). Source apportionment and influencing factors of surface water pollution through a combination of multiple receptor models and geodetector. Environmental Research, 263. https://doi.org/10.1016/j.envres.2024.120168 DOI: https://doi.org/10.1016/j.envres.2024.120168
  34. Yu, M., Wang, C. R., Liu, Y., Olsson, G., & Wang, C. Y. (2018). Sustainability of mega water diversion projects: Experience and lessons from China. Science of the Total Environment, 619, 721–731. https://doi.org/10.1016/j.scitotenv.2017.11.006 DOI: https://doi.org/10.1016/j.scitotenv.2017.11.006
  35. Zeng, Q., Qin, L., & Li, X. (2015). The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Science of The Total Environment, 536, 675–686. https://doi.org/10.1016/j.scitotenv.2015.07.042 DOI: https://doi.org/10.1016/j.scitotenv.2015.07.042
  36. Zhang, L., Li, S., Loáiciga, H. A., Zhuang, Y., & Du, Y. (2015). Opportunities and challenges of interbasin water transfers: A literature review with bibliometric analysis. Scientometrics, 105(1), 279–294. https://doi.org/10.1007/s11192-015-1656-9 DOI: https://doi.org/10.1007/s11192-015-1656-9
  37. Zheng, Z., Dong, Z., Wang, W., Han, Y., Yang, J., Cui, C., Wang, X., Long, Q., & Shao, Y. (2023). Dynamic evolution of spatial equilibrium degree of water resources composite system in systemregion two stages: The case of Lianshui Basin, China. Ecological Indicators, 150, 110199. https://doi.org/10.1016/j.ecolind.2023.110199 DOI: https://doi.org/10.1016/j.ecolind.2023.110199
  38. Zhu, Y., Zhang, C. Z., & Huang, D. C. (2024). Assessing Urban Water-Energy-Food Security: A Case of Yangtze River Delta Urban Agglomeration. Social Indicators Research, 175(2), 487–516. https://doi.org/10.1007/s11205-024-03355-2 DOI: https://doi.org/10.1007/s11205-024-03355-2
  39. Zou, D. L., & Cong, H. B. (2021). Evaluation and influencing factors of China’s industrial water resource utilization efficiency from the perspective of spatial effect. Alexandria Engineering Journal, 60(1), 173–182. https://doi.org/10.1016/j.aej.2020.06.053 DOI: https://doi.org/10.1016/j.aej.2020.06.053