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1. Introduction
Streets, as multifunctional aggregators within urban 

landscapes, not only facilitate the city's daily transportation 
needs but also serve as vital public spaces for social inter-
action and leisure activities among residents. Street vitality, 
perceived through the lens of human activity within these 
spaces, reflects the concentration of people in streets and 
stands as a significant indicator of urban vibrancy[1].Influ-
enced and constrained by the built environment that ac-
commodates human spatial activities, street vitality is 
shaped by the continuous organization and succession of 
urban functions. Both the aggregation of resources at the 

macro neighborhood level and the composition of the spa-
tial environment at the micro street level contribute to the 
temporal and spatial distribution differences of vitality with-
in urban street spaces[2]. Against the backdrop of high-
quality urban development aimed at creating desirable liv-
ing environments, the quality of urban public spaces has 
garnered increasing attention from residents. Investigating 
the impact mechanisms of the built environment on street 
vitality across multiple scales is crucial for fostering hu-
man-centered public spaces and enhancing urban living 
environments.

Journal of Sustainable Built Environment

https://doi.org/10.70731/b3b1q080

Spatiotemporal Characteristics of Built Environment Impacts 
on Street Vitality in Central Nanchang: A Multiscale 
Geographically Weighted Regression Approach

Zheng Gong a, Qiyang Zhao a,*, Wentao Song a, Zhiling Jian a
a School of Earth Sciences, East China University of Technology, Nanchang 330013,China

 
K E Y W O R D S

 
A B S T R A C T

Street Vitality;
Built Environment; 
Multiscale Geographically 
Weighted Regression 
(MGWR); 
Street View Imagery;
Nanchang City

Exploring the impact of the built environment on street vitality is essential for 
enhancing urban public spaces. Using the central urban area of Nanchang 
City as a case study, multi-temporal street vitality is measured with popula-
tion heat data. A multi-dimensional built environment indicator system is de-
veloped based on macro-scale neighborhood composition and micro-scale 
street characteristics, using street view imagery, POI data, and OSM road 
network data. The spatiotemporal variations in the influence of built envi-
ronment factors on street vitality are examined through a multiscale geo-
graphically weighted regression (MGWR) model. Results reveal that: (1) 
Street vitality is most prominent between 10:00 and 20:00, with a spatial 
pattern of "eastern core, western belt, and multiple clustered points" across 
all time periods. (2) Macro-scale neighborhood composition generally has a 
stronger impact on street vitality than micro-scale street characteristics. (3) 
The influence of various built environment factors on street vitality exhibits 
significant spatiotemporal heterogeneity. Factors like sky view openness 
and parking lot density show robust spatiotemporal variations, while con-
nectivity, facility densities, walkability, street ratio, and green view index 
have localized spatiotemporal effects. 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Existing research has predominantly focused on un-
covering the effects of the built environment on street vitali-
ty, considering both macro neighborhood characteristics 
and micro street compositions, and has constructed multi-
element indicators from perspectives such as location, in-
terface accessibility, functionality, and facilities[3-5]. Early 
small-scale case studies based on field research delved 
into observing interface characteristics, facility arrange-
ments, and landscape compositions within micro street 
spaces[4-5]. Subsequently, the advent of the new data wave 
has expanded the research scale of street  vitality through 
the integration of multi-source big data, with POI and road 
network data widely applied to measure the density distrib-
ution of neighborhood resources and the accessibility of 
transportation and facilities at the urban scale[6-7]. However, 
compared to the detailed measurements at the neighbor-
hood scale that focus on micro street characteristics, the 
large-scale measurements at the urban scale are limited 
by data collection and analysis methods, often remaining 
at the two-dimensional material space level and seldom 
addressing the micro three-dimensional street space char-
acteristics from the perspective of human subjective per-
ception and experience. Recent advancements in machine 
learning and image segmentation within the computer sci-
ence field have provided new methodologies for the large-
scale measurement of three-dimensional built environment 
indicators of streets[8]. Related studies, based on image 
semantic segmentation and large-scale image recognition 
technologies, have automated the extraction of elements 
such as sky, buildings, and roads from street view images 
to form three-dimensional built environment indicators of 
streets, applying these to the measurement and evaluation 
of street quality[9-10], urban functional area identification[11], 
and urban spatial perception[12].

In exploring the relationship between the built environ-
ment and street vitality, existing research has predominant-
ly employed linear regression models[13], analyzing the im-
pact differences of various built environment elements on 
street vitality based on the linear distribution trends of 
sample values among variables. However, traditional linear 
regression analysis focuses on exploring the effect of vari-
ables on vitality at a global scale through the linear distrib-
ution differences of indices, neglecting the spatial distribu-
tion patterns of variables at the meso and macro scales. 
For streets within a city, the similarity of their regional envi-
ronment and their inherent attractiveness determine a cer-
tain degree of similarity and dependency in attracting peo-
ple among nearby streets[14], thereby forming a differenti-
ated distribution of vitality and the built environment in 
space. Recently, scholars have utilized the multi-scale ge-
ographically weighted regression model (MGWR) to ex-
plore neighborhood vitality[14], housing prices[15], the pro-
portion of public transport commuting[16], and their influenc-
ing mechanisms, preliminarily validating its applicability in 
studying the differentiation of spatial characteristics at the 
urban scale. This method addresses the lack of considera-
tion for spatial heterogeneity in traditional linear regression 
models by setting differentiated bandwidths for each vari-
able to form different spatial action scales, thereby provid-

ing a more realistic explanatory power to the overall spatial 
model[17-18].

In summary, this paper takes the central urban area of 
Nanchang as a case study, utilizing POI data and OSM 
road network data to measure the two-dimensional materi-
al space environment, and further employs street view data 
to measure the micro three-dimensional space environ-
ment from the perspective of human subjective perception 
and experience. Finally, the multi-scale geographically 
weighted regression model (MGWR) is introduced to ex-
plore the temporal and spatial differences in the impact of 
various built environment elements on street vitality, offer-
ing insights and references for the differentiated creation of 
urban vitality and the enhancement of public space quality.

2. Research Object and Data Sources
2.1. Research Object

The case study area is selected as the central urban 
area of Nanchang, Jiangxi Province, with its spatial scope 
defined as the area within the Dongxi Lake District and the 
Honggutan New District of Nanchang City, which is the 
concentrated construction area and highly populated area 
of Nanchang City, covering a total area of approximately 
114 km². For convenient comparative analysis, the road 
network within the research scope is divided into 651 street 
segments, serving as the basic units for this study (Figure 
1). As the traditional core area of the city, the central urban 
area of Nanchang is the political, economic, and cultural 
center of Wuhan City, with a large concentration of popula-
tion, commercial, office, residential, educational, and ad-

Figure 1 | Distribution of streets in the central urban area 
of Nanchang
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ministrative facilities, forming differentiated urban spatial 
built environments and human activity distribution charac-
teristics within the region.

2.2. Data Sources and Processing
The basic data of this paper mainly include four cate-

gories: road network data, population heat data, street 
view image data, and POI data:

Road Network Data: The road network data of the cen-
tral urban area of Nanchang is sourced from the Open-
StreetMap website (www.openstreetmap.org). Based on 
the ArcGIS 10.8 platform, the road network data is cleaned 
and topologically processed, and then interrupted at inter-
sections. Subsequently, road buffers are constructed 
based on the road centerline with a buffer distance of 55 
meters. This range basically includes the road red line 
range and its surrounding shops, open spaces, and other 
areas that may affect street vitality.

Population Heat Data: The population heat data is 
sourced from the Baidu Map Huiyan Big Data Platform 
(https://huiyan.baidu.com). Using Python to access the 
server's open port, location service data of the central ur-
ban area of Nanchang is collected continuously for 24 
hours from May 5, 2025, to May 11, 2025, with the data 
format being "longitude_latitude_value". Since the activity 
state of people when using mobile devices is mostly walk-
ing or staying, the instantaneous positioning data generat-
ed in this state can effectively reflect the real location in-
formation of people at specific times[19].

Street View Data: The street view data is obtained from 
the Baidu Street View Application Programming Interface 
(http://bsyun.baidu.com). First, based on the vector road 
network of the central urban area of Nanchang, a sampling 
point coordinate is obtained every 100 meters, and a 
Python program is written to call the server interface to 
obtain panoramic images of the sampling points. A total of 
35,687 panoramic street view images are collected starting 
from May 2024. Then, the PSPNet model pre-trained on 
the MIT ADE20K dataset is used to semantically segment 
the panoramic images, identifying and calculating the area 
proportion of street built environment elements such as 
sky, green plants, buildings, and roads in the street view 
images. PSPNet, as a commonly used method in street 
view image semantic segmentation, effectively reduces the 

probability of misidentification by applying a pyramid pool-
ing module to extract and fuse multi-layer features of im-
ages, and is one of the current image recognition algo-
rithms with high data classification accuracy[20].

POI Data: The POI data is sourced from Tencent Maps, 
with the acquisition time being June 2024. The data covers 
16 major categories including food, corporate enterprises, 
hotels, tourist attractions, and infrastructure, and has ad-
vantages in describing the functional diversity of streets 
and the spatial distribution of stations. Considering the 
spatial layout forms on both sides of roads of different 
grades, a total of 132,316 POI points are obtained after 
intersecting with the street buffers within the research 
scope through the ArcGIS 10.8 platform.

3. Research Methods and Technical Path
3.1. Indicator Construction

3.1.1.Measurement of Street Vitality Intensity
Referring to existing research on the scale measure-

ment of street vitality, this paper quantifies street vitality as 
the aggregation intensity of people staying or walking slow-
ly in space. First, based on the acquired location service 
data, population heat points are visualized on the ArcGIS 
10.8 platform according to coordinate information and val-
ue values. Second, through kernel density analysis, popu-
lation heat points are generated into heat grids with a 
search radius of 200 meters and a cell size of "20 meters x 
20 meters", totaling 128 images. Using the natural break-
point mean of each grid as the division standard, the re-
classification tool is used to divide the heat grid values into 
7 levels, and then the raster to polygon tool is used to vec-
torize the graded heat grids. Finally, the vector grids are 
intersected with each road buffer, and based on the face 
data with vitality intensity levels within the intersected buf-
fer and the buffer area, a weighted average is performed to 
obtain the vitality intensity value of each road segment. 
The specific calculation formula is as follows:

(1)Q =
∑n

i=1 AiQi

∑n
i=1 Ai

Figure 2 | Technical Path

http://www.openstreetmap.org/
https://huiyan.baidu.com/
http://bsyun.baidu.com/
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Table 1 | Calculation statistics of the built environment elements

Built environment Evaluation level Evaluation metrics Quantification of metrics

Two-dimensional built 
environment

Traffic convenience

The nearest distance to a 
transportation station

Using the Nearest Facility Point Analysis 
tool in ArcGIS 10.8 software, the actual 
distances from the midpoint of streets to the 
nearest bus stops and subway stations 
were calculated to reflect the accessibility of 
the streets

Parking lot density
The number of parking lots within a 55-
meter buffer zone on both sides of the 
street centerline

Convenience

The accessibility of a street to nearby 
streets was analyzed by calculating the 
ratio of the number of street intersections to 
the length of the street. 

facility convenience

Functional mixing degree
The location entropy of major points of 
interest (POIs) within the street buffer zone 
reflects the diversity of facilities

Catering function

The ratio of the number of catering facilities 
within a 55-meter buffer zone on both sides 
of the street centerline to the length of the 
street was calculated using the ArcGIS 
Spatial Join tool

Entertainment function

The ratio of the number of Entertainment 
within a 55-meter buffer zone on both sides 
of the street centerline to the length of the 
street was calculated using the ArcGIS 
Spatial Join tool

Shopping function

The ratio of the number of accommodation 
hotels within a 55-meter buffer zone on both 
sides of the street centerline to the length of 
the street was calculated using the ArcGIS 
Spatial Join tool

Three-dimensional built 
environment

Space comfortability

Sky openness
The average proportion of sky elements in 
street view images within the street unit 
reflects the degree of spatial openness

Green light rate
The average proportion of vegetation 
elements in street view images within the 
street unit reflects the level of greenery

Architectural Continuous 
Process

The standard deviation of the building-to-
space ratio within a street reflects the 
degree of continuity of the building 
interface.

Enclosure degree

The ratio of buildings, walls, columns, 
fences, and trees within street view images 
reflects the degree of enclosure in the street 
space

environmentl safety

Road surface feasibility
The average ratio of pedestrian walkways 
to roadways within the street reflects the 
scale of pedestrian space

Relative pedestrian width
The average ratio of pedestrian pathways to 
roadways within a street reflects the scale 
of pedestrian space.

Traffic safety

The proportion of the midpoint of the street 
to traffic safety facilities, along with the 
average ratio of railings and columns within 
the street, reflects the level of traffic safety, 
as well as the distance to the nearest 
subway entrance
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Where  isthe street vitality intensity,    is the vitality 
intensity level corresponding to the -th unit within the 
street,   is the area of unit , and   is the number of face 
data of each level within the road buffer. The built environ-
ment indicators that meet the conditions are used as inde-
pendent variables to construct the MGWR model with 
street vitality at each time period to explore the temporal 
and spatial differences in the impact of different built envi-
ronment elements on street vitality .

3.1.2.Measurement of Built Environment Indicators
Referring to the existing indicator composition of street 

vitality influencing factors[21-22], 14 built environment ele-
ments are preliminarily selected for measurement from four 
levels: transportation accessibility, facility conveuilt envi-
ronment includes 8 indicators such as sky openness, en-
closure degree, and green view rate, reflectinnience, spa-
tial comfort, and environmental safety, including two-di-
mensional spatial environment indicators focusing on 
macro neighborhood characteristics and three-dimensional 
spatial environment indicators focusing on micro street 
composition. Among them, the three-dimensional bg the 
micro street spatial composition environment from the per-
spective of human subjective perception and experience at 
the three-dimensional level. These indicators can provide 
references for the design of local street spaces and the 
improvement of human settlements. The composition and 
calculation rules of each indicator are shown in Table 1.

3.2. Analysis Methods
This paper adopts the multi-scale geographically 

weighted regression model to explain the temporal and 
spatial differences in the impact of two-dimensional and 
three-dimensional built environments on street vitality. The 
multi-scale geographically weighted regression model 
(MGWR) improves on the classic geographically weighted 
regression model (GWR) by addressing the limitation that 
variables can only choose the same bandwidth.

The model sets different bandwidths for each variable 
to present different scale characteristics. The smaller the 
bandwidth selected for a variable, the smaller its impact on 
the overall spatial scale and the stronger its spatial hetero-
geneity. Conversely, the larger the bandwidth selected for a 
variable, the more stable it is on the global scale[23]. The 
calculation formula is as follows

Where   is the -th  predictor variable,   are 
the centroid coordinates of street segment , and   rep-
resents the bandwidth of the regression coefficient for the 
-th variable. This study uses MGWR 2.2 software for model 
calculation and completes visual analysis based on the 
ArcGIS 10.8 platform

3.3. Technical Path
First, Baidu Huiyan population heat data is used to 

measure and deconstruct the temporal and spatial varia-
tion characteristics of street vitality in the central urban 

area of Nanchang at different times of the day. Second, 
POI data, OSM road network data, and Baidu street view 
data are used to measure the two-dimensional and three-
dimensional built environment. Finally, spatial autocorrela-
tion analysis and linear regression analysis are used to 
screen variables.

4. Temporal and Spatial Variation 
Characteristics of Street Vitality in the 
Study Area

4.1. Temporal Variation Characteristics of Street 
Vitality Intensity

To intuitively reflect street vitality, the calculated aver-
age heat value of streets is represented as a line chart. 
The statistical results are shown in Figure 3: The fluctua-
tion situation can be roughly divided into four stages: the 
morning period from 7:00 to 11:00, the noon period from 
11:00 to 15:00, the afternoon period from 15:00 to 19:00, 
and the night period from 19:00 to 23:00. During different 
times of the day, there are multiple transient heat peaks. 
Street vitality reaches its first peak at 12:00, consistent with 
the rapid gathering of people during the morning peak pe-
riod. From 12:00 to 14:00, it gradually decreases. After 
that, entertainment and commercial activities in the central 
urban area gradually become active. Due to the influence 
of the evening peak and nightlife activities, the number of 
people in the streets reaches a peak around 20:00, but 
after that, gathering activities gradually decrease, leading 
to a rapid decline in street vitality.

The Baidu heat data is divided into 6 levels using the 
natural breakpoint method, with levels 1-2 classified as low 
vitality areas, levels 3-4 as medium vitality areas, and lev-
els 5-6 as high vitality areas. The Baidu heat data obtained 
through vectorization processing is used to count the area 
proportion of each level, and the proportion of streets with 
different vitality levels is studied. The statistical results are 
shown in the table.

Analyzing the proportion of streets with different vitality 
levels, it can be seen that during the morning peak from 
7:00 to 9:00, the proportion of high vitality streets and 
medium vitality streets is low, and they start to rise with 

Q Qi
i

Ai i n

(2)yi =
k

∑
j=1

σbwj(ui, vi)xij + βi

Xij j (Ui, Uv)
i σbwj

j

Figure. 3 | Variation of Overall Street Vitality in the Central 
Urban Area of Nanchang
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roughly the same trend. Due to the relatively dispersed 
distribution of people during lunch time, the proportion of 
high vitality streets and medium vitality streets shows a 
slow downward trend from 11:00 to 13:00. At 18:00 in the 
afternoon, the proportion of medium vitality streets is rela-
tively high, reaching a vitality peak. At 20:00 at night, the 
proportion of high vitality streets is relatively high, reaching 
a vitality peak, while the proportion of medium vitality 
streets is relatively low. This phenomenon can be at-
tributed to the further gathering of people's activities in the 
central urban area at night. It can be inferred that the in-
tensity of people's activities in the morning is usually higher 
than that during the noon period. The density of people in 
the neighborhood gradually increases after lunch time, in-
dicating that the leisure activities of neighborhood people 
usually reach a peak from after lunch time to the evening.

4.2. Spatial Differentiation Characteristics of 
Street Vitality Intensity

To further explore the spatial differentiation characteris-
tics of street vitality at different times of the day, especially 
during the main activity periods, the average vitality of 
streets during four time periods: 7:00-11:00 (morning), 
11:00-15:00 (noon), 15:00-19:00 (afternoon), and 
19:00-23:00 (night) is visualized. The analysis results in 
the spatial distribution map of the comprehensive heat val-
ue of streets on weekdays (Figure 4). From Figure 4, it can 
be seen that the overall street vitality in the central urban 
area of Nanchang shows a spatial differentiation pattern of 
"east core, west belt, multi-point aggregation", with medi-
um and high value areas forming differentiated distribu-
tions with time changes. It can be seen that high vitality 
streets and medium vitality streets on weekdays are mostly 
concentrated in the central part of the old city, and the vital-
ity of streets in the north is significantly higher than that in 
the south. Specifically, high vitality streets are mainly con-

Table. 2 | Statistics of Instantaneous Vitality Intensity Proportion in Streets of Central Urban Area of Nanchang

Time period Type of fluctuation Heat value Volatility

07:00-11:00 Rapid rise 290-339 0.17

11:00-13:00 Slowly rising 339-370 0.09

13:00-15:00 Slow descent 370-347 -0.06

15:00-17:00 Slowly rising 347-367 0.06

17:00-19:00 Rapid rise 367-409 0.11

19:00-21:00 Slowly rising 409-429 0.05

21:00-23:00 Fast descent 429-340 -0.21

Table 3 | Statistics of Instantaneous Vitality Intensity Proportion in Streets of Central Urban Area of Nanchang

8:00 10:00 12:00 14:00

Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio

High-energy 
street 10 1.54% 30 4.61% 45 6.91% 33 5.07%

Mid-energy 
street 96 14.75% 123 18.89% 118 18.13% 112 17.20%

Low-energy 
street 545 83.72% 498 76.50% 488 74.96% 506 77.73%

16:00 18:00 20:00 22:00

Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio

High-energy 
street 44 6.76% 55 8.45% 71 10.91% 48 7.37%

Mid-energy 
street 136 20.89% 147 22.58% 102 15.67% 95 14.59%

Low-energy 
street 471 72.35% 449 68.97% 478 73.43% 508 78.03%
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centrated in the cultural and tourism integration area with-
in the Wanshou Palace historical urban area and the tradi-
tional commercial center area of Zhongshan Road-Shengli 
Road Pedestrian Street. Although this area is an old city, it 
has a large concentration of shopping, dining, and ac-
commodation resources, rich tourism resources, complete 
public service functions, and well-equipped living facilities. 
Secondly, the central area of Honggutan, centered on 
Central Financial Street, also has high street vitality, in-
cluding CBD, Qiushui Square, etc. This area has well-
equipped commercial facilities and high transportation ac-
cessibility, making it easy to gather vitality. It can be seen 
that the street vitality in the central urban area shows a 
trend of decreasing from the central area on both sides of 
the Gan River to the suburbs, and a distribution of central 
aggregation and stronger north than south.

5.Spatiotemporal Heterogeneity in the Impact 
of Street-Level Built Environment on Urban 
Vitality Intensity: a Multiscale Analysis

5.1.Analytical Framework for MGWR Model 
Results

5.1.1.Screening of Built Environment Indicators
First, spatial autocorrelation analysis is conducted on 

the 14 built environment indicators, and the results show 
that all variables have obvious clustering characteristics in 
space. From the global Moran's index statistics, the near-
est distance to comprehensive shopping malls, proximity, 
and the nearest distance to transportation stations have 
very strong clustering characteristics (Table 4). Then, ordi-
nary least squares (OLS) is further used to perform re-
gression analysis with the 14 multi-dimensional built envi-

Figure 4 | Spatial Variation of Street Vitality Intensity Across 
Different Time Periods

Table 4a | Results of Spatial Autocorrelation and Multicollinearity Diagnostics for the Built Environment

First-level indicators
Two-dimensional built environment

Traffic convenience facility convenience

Secondary indicators
Transportat

ion 
distance

Parking lot 
density Connectivity

Functional 
mixing 
degree

Catering 
function

Entertain-ment 
function

Shopping 
function

Space-time self-
correlation

Global 
Moran's 

index 
Numeric

0.440341 0.334867 0.682102 0.252610 0.167312 0.297193 0.777576

Variance 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004

Z score 171.76515
6

225.41422
5 348.521286 129.080649 85.559826 152.102850 397.44371

6

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Collinearity 
Diagnosis

Variance 
inflation 
factor

1.563141 1.494003 1.590602 1.645913 1.385783 1.747346 1.505872
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ronment elements as independent variables and the street 
vitality values at each time period as dependent variables. 
The results show that the VIF values of all independent 
variables are far below 75 (Table 4), indicating that there is 
no multicollinearity problem among the variables. However, 
the probability p-values of relative pedestrian width and 
building continuity are greater than 0.01 in all time periods, 
indicating that their impact on street vitality is not signifi-
cant and needs to be excluded. Finally, the remaining 12 
built environment indicators participate in the subsequent 
model construction.

5.1.2.Model Regression Results
According to the temporal variation characteristics of 

street vitality intensity, the street vitality and built environ-
ment indicators of the four time periods are introduced into 
the multi-scale weighted regression model for analysis 
(Table 5). The results show that the average adjusted R² of 
the MGWR model in each time period is 0.844, indicating 
that its overall explanation degree of street vitality changes 
in the central urban area of Nanchang is as high as 84.4% 
on average. Subsequently, based on the regression coeffi-
cients, variable interpretability, and spatial action scale 
(bandwidth), the temporal and spatial effects of different 
built environment elements on street vitality in each time 
period are further analyzed. The regression coefficients of 
the three-dimensional built environment indicators are rela-
tively high overall, but there are differences in variable in-
fluence and interpretability in different time periods.

5.2. Spatiotemporal Differences in the Impact of 
Two-Dimensional Built Environment on Street 
Vitality

5.2.1.Temporal Differences in the Two-Dimensional 
Built Environment

(1) Transportation Accessibility
Parking lot density showed a positive correlation with 

street vitality across all time periods, with higher signifi-
cance overall. Its influence was stronger in the morning 
and midday compared to the afternoon and evening, indi-
cating that the capacity for vehicle parking in street spaces 
positively promotes vitality. Connectivity also demonstrated 
a positive impact on vitality, particularly during daytime 
hours when pedestrian accessibility attracts natural travel 
choices. However, the average distance to the nearest 
transportation hub exhibited a negative correlation with 
street vitality across all periods, though its explanatory 
power was negligible. This may be due to the relatively 
balanced distribution of transportation hubs in Nanchang's 
central urban area[25], resulting in minimal differences in 
accessibility between streets (Figure 5).

Facility Accessibility
The explanatory power of dining facilities on street vital-

ity (37.79%-68.97%) remained consistently high across all 
periods. This is primarily because dining facilities cater to 
various needs throughout the day, including breakfast, 
lunch, afternoon tea, dinner, and late-night snacks, ensur-
ing a steady flow of people and sustaining street vitality. 
Shopping facilities had the highest absolute regression 
coefficients (0.159-0.234) across all periods, with their pos-
itive influence peaking during the evening. Their explanato-
ry power (51.31%-70.20%) was also consistently high, 
highlighting the strong promotional effect of commercial 
activities on street vitality. However, the localized clustering 

Table 4b | Results of Spatial Autocorrelation and Multicollinearity Diagnostics for the Built Environment

First-level indicators
Three-dimensional built environment

Space comfortability environmentl safety

Secondary indicators Sky 
openness

Green light 
rate

Architectura
l 

Continuous 
Process

Enclosure 
degree

Road 
surface 

feasibility

Relative 
pedestrian 

width

Traffic 
safety

Space-time self-
correlation

Global 
Moran's 

index 
Numeric

0.144728 0.235639 0.089482 0.317182 0.084996 0.089482 0.112461

Variance 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004

Z score 171.765156 162.072935 45.788505 129.080649 45.194476 185.559826 57.571604

P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Collinearity 
Diagnosis

Variance 
inflation 
factor

1.252827 1.371032 1.420298 3.133947 1.065539 1.385783 1.058528



 36

of commercial facilities led to spatially significant variations 
in their explanatory power.

Entertainment facilities showed an increasing positive 
correlation with street vitality as the day progressed, peak-
ing in the evening. This indicates that the impact of leisure 
and entertainment facilities on street vitality is more pro-
nounced at night due to their primary usage times. Func-
tional mix exhibited a negative correlation with street vitali-
ty across all periods, suggesting that streets with lower 
functional mix tend to concentrate vitality more effectively. 
Specifically, streets dominated by single-use commercial 
activities are more likely to attract consumer behavior, with 
clear travel purposes for various facilities, especially at 
night.

5.2.2.Spatial Differences in the Two-Dimensional Built 
Environment

To explain the spatial heterogeneity of the influencing 
factors, ArcGIS 10.8 was used to visualize the coefficients 
of significant factors during the main activity periods. The 
spatial patterns of some variables are shown in Figures 6 
and 7. Overall, connectivity, as a global variable, exhibited 
the most stable spatial influence on street vitality, followed 
by parking lot density. Entertainment and dining facilities 
showed significant spatial heterogeneity, while shopping 
facilities displayed distinct spatial differentiation.

Specifically, the impact of connectivity on street vitality 
showed minimal spatial variation, with its positive influence 
gradually increasing from north to south throughout the 
day. High-value areas were concentrated in Jiuzhou and 
Chaonong streets in Xihu District, where parks and educa-
tional facilities are abundant, facilitating pedestrian activi-

Table 5 | Statistical Summary of Regression Results from the Multiscale Geographically Weighted Regression (MGWR) Model

Variable

07:00-11:00 11:00-15:00 15:00-19:00 19:00-23:00

Bandwi
dth

Averag
e value

Variable 
interpret
ability

Bandwi
dth

Averag
e value

Variable 
interpret
ability

Bandwi
dth

Averag
e value

Variable 
interpret
ability

Bandwi
dth

Averag
e value

Variable 
interpret
ability

The nearest 
distance to a 
transportation 

station
221 -0.053 0 189 -0.012 0 650 -0.041 0 650 -0.023 0

Parking lot density 646 0.082 100 650 0.081 100 507 0.075 73.58 650 0.057 57.93

Convenience 650 0.181 80.65 650 0.133 57.31 252 0.136 57.30 268 0.118 56.99

Functional mixing 
degree 650 -0.065 0 650 -0.066 0 650 -0.067 0 650 -0.115 0

Catering function 650 0.070 37.79 650 0.072 58.06 650 0.093 58.06 650 0.074 68.97

Entertainment 
function 650 0.002 14.75 650 0.010 17.97 650 0.011 51.77 650 0.009 39.63

Shopping function 257 0.159 62.83 236 0.158 70.20 249 0.195 51.31 236 0.234 70.20

Sky openness 650 -0.348 100.00 650 -0.073 100.00 650 -0.327 77.57 650 -0.338 100

Green light rate 338 0.605 0 198 -0.227 0 439 0.571 0 447 0.787 0

Enclosure degree 431 -1.313 0 650 0.108 0 431 -1.244 0 419 -1.568 0

Road surface 
feasibility 295 0.011 74.50 650 0.001 64.71 650 0.003 59.91 650 0.011 35.94

Traffic safety 650 0.216 53.92 650 0.032 54.84 650 0.205 36.71 148 0.257 14.13

Adjusted R-squared 0.835 0.843 0.852 0.846

Note: Variable interpretability represents the percentage of the total sample size with significant coefficients (p ≤ 0.05) for explanatory variables.

Figure 5 | Distribution of the Nearest Distance to Trans-
portation Stations and Density of Entertainment Facilities 
in Streets
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ties such as sightseeing and commuting. In contrast, areas 
like Honggutan District's Hongjiaozhou and Jiulonghu 
streets, as well as Baihuazhou Street in the historical dis-
trict, showed no significant impact due to the high density 
of transportation and educational facilities, which attract 

purpose-driven pedestrians unaffected by street connectiv-
ity.

The positive impact of parking lot density on street vital-
ity generally increased from the central to the western ar-
eas. High-value areas were clustered in Dinggong Road 
and Pengjiaqiao streets in Donghu District, where limited 

Figure 6 | Spatial Distribution of Regression Coefficients forTraffic convenience

Figure 7 | Spatial Distribution of Regression Coefficients for Facility Convenience
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vehicle access in the historical district necessitates parking 
before entering, enhancing the influence of parking density 
on vitality. In other areas, the availability of public trans-
portation, such as subways and buses, reduced the re-
liance on parking facilities.

Dining facilities exhibited a positive influence on street 
vitality that decreased from the central to the western ar-
eas. High-value areas were concentrated in Dinggong 
Road and Shengjin Tower streets in Donghu District, where 
local cuisine in the old town enhances street attractive-
ness. Entertainment facilities showed positive correlations 
and significance in the afternoon and evening, with their 
influence decreasing from the central to the western areas. 
High-value areas were mainly located in the historical dis-

tricts of Donghu and Xihu Districts, where abundant 
tourism and leisure resources attract visitors and sustain 
high street vitality.

Commercial facilities displayed localized clustering in 
their positive influence on street vitality, with high-value 
areas concentrated in Tengwang Pavilion Street in Xihu 
District and Shajing Street in Honggutan District. These 
areas feature a mix of traditional and chain commercial 
establishments, attracting both local residents and tourists 
and enhancing street vitality.

5.3. Spatiotemporal Differences in the Impact of 
Three-Dimensional Built Environment on 
Street Vitality

5.3.1.Temporal Differences in the Three-Dimensional 
Built Environment

As shown in Figure 8, the regression coefficients of the 
built environment indicators across the four time periods 
were generally low, with significant variations in influence 
and explanatory power across different periods.

Spatial Comfort
The explanatory power of green view ratio and enclo-

sure degree was negligible. This may be due to the dis-
persed distribution of greenery along roads and the relative 
clustering of vegetation around natural landscapes, render-
ing the green view ratio ineffective in explaining vitality. 
High pedestrian flow streets may not be significantly af-
fected by enclosure degree, as the existing foot traffic is 
sufficient to sustain street vitality. Sky view openness ex-
hibited a negative correlation and was significant across all 
four periods. Its negative influence gradually increased 
during the daytime, peaking in the afternoon. This is likely 
because streets with high sky view openness often lack 
building or tree cover, leading to functional monotony and a 
lack of commercial, cultural, or social activities that attract 
pedestrians. In the afternoon, people tend to gather in work 
areas, amplifying the impact of sky view openness on 
street vitality.

Environmental Safety
The average regression coefficient of walkability ratio 

showed a positive correlation with street vitality across all 
periods, with high explanatory power (35.94%-74.50%). Its 
positive influence was stronger in the morning and after-
noon, as these periods involve commuting activities. A 
well-maintained pedestrian environment supports walking, 
cycling, and other modes of transportation, increasing 
street usage and attracting more customers, thereby pro-
moting commercial activity. In contrast, traffic safety facili-
ties had lower explanatory power (14.13%-54.84%), with 
their positive influence peaking in the afternoon when 
commuting demand is high. Properly designed traffic facili-
ties can optimize traffic flow, reduce congestion, and en-
hance street attractiveness.

5.3.2.Spatial Differences in the Three-Dimensional 
Built Environment

As shown in Figure 9, sky view openness, as a global 
negative correlation variable, exhibited a spatial pattern of 
higher influence in peripheral areas and lower influence in 
central areas. High negative impact areas were concen-

Figure 8 | Distribution of Green View Index and Enclosure 
Rate

Figure 9 | Spatial Distribution of Regression Coefficients 
for Spatial Comfort
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trated in Hongjiaozhou and Jiulonghu streets in the south-
western part of the central urban area, where large trans-
portation and entertainment facilities dominate, and pedes-
trian activities are more purpose-driven. In contrast, Tao-
hua Street and Shengjin Tower Street in the southern his-
torical district showed relatively lower impacts on street 
vitality. These areas feature scenic landscapes and iconic 
buildings, where high sky view openness does not signifi-
cantly affect pedestrian destinations or street activities.

As shown in Figure 10, the positive influence of walka-
bility ratio on street vitality exhibited a spatial pattern of 
higher values in the west and lower values in the east. 
High-value areas were concentrated in Hongjiaozhou and 
Jiulonghu streets in the Honggutan New District, with addi-
tional clustering in Shajing Street during midday. This may 
be due to the presence of large commercial and office fa-
cilities in these areas, where pedestrians primarily use 
sidewalks for dining and commuting activities during 
lunchtime. The influence of traffic safety facilities on street 
vitality was concentrated near the historical district during 

midday and afternoon periods. This is because these peri-
ods involve diverse pedestrian activities, and the historical 
district's commercial vibrancy, combined with fewer vehicle 
lanes, enhances the pedestrian environment, attracting 
more customers and promoting commercial activities.

6. Conclusions and Discussion
This paper takes the central urban area of Nanchang as 

a case study, uses population heat data to measure and 
deconstruct the temporal and spatial differences of street 
vitality, uses OSM road network data and POI data to 
measure the two-dimensional material space environment, 
further uses street view images to measure the micro 
three-dimensional street space environment based on hu-
man subjective perception and experience, and uses the 
multi-scale geographically weighted regression model to 
explore the differentiation characteristics of multi-dimen-
sional built environment and urban street vitality in time 
and space. The main conclusions are as follows.

The temporal and spatial distribution differences of 
street vitality in the central urban area of Nanchang are 
obvious. In terms of time, residents' activities on the streets 
are mostly concentrated from 6:00 to 23:00, with the high-
est proportion of medium and high vitality streets from 9:00 
to 18:00. In terms of space, the spatial structure of street 
vitality generally shows a differentiation pattern of "east 
core, west belt, multi-point aggregation", and the aggrega-
tion characteristics are most obvious in the afternoon.

The impact of the two-dimensional built environment on 
street vitality is generally more significant than that of the 
three-dimensional built environment. Specifically, among 
the two-dimensional built environment indicators, parking 
lot density, connectivity, and shopping facility density have 
high interpretability for street vitality in all time periods, 
while catering facility density and entertainment function 
have high interpretability in some time periods. Among the 
three-dimensional built environment indicators, only sky 
openness and road surface feasibility have high inter-
pretability for street vitality in most time periods.

The temporal and spatial heterogeneity of the impact of 
each built environment element on street vitality is obvious. 
In terms of transportation accessibility, the positive influ-
ence of connectivity on street vitality generally increases 
from north to south in space in all time periods
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