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ABSTRACT

Exploring the impact of the built environment on street vitality is essential for
enhancing urban public spaces. Using the central urban area of Nanchang
City as a case study, multi-temporal street vitality is measured with popula-
tion heat data. A multi-dimensional built environment indicator system is de-
veloped based on macro-scale neighborhood composition and micro-scale
street characteristics, using street view imagery, POI data, and OSM road
network data. The spatiotemporal variations in the influence of built envi-
ronment factors on street vitality are examined through a multiscale geo-
graphically weighted regression (MGWR) model. Results reveal that: (1)
Street vitality is most prominent between 10:00 and 20:00, with a spatial
pattern of "eastern core, western belt, and multiple clustered points" across
all time periods. (2) Macro-scale neighborhood composition generally has a
stronger impact on street vitality than micro-scale street characteristics. (3)
The influence of various built environment factors on street vitality exhibits
significant spatiotemporal heterogeneity. Factors like sky view openness
and parking lot density show robust spatiotemporal variations, while con-
nectivity, facility densities, walkability, street ratio, and green view index
have localized spatiotemporal effects.

1. Introduction

Streets, as multifunctional aggregators within urban

macro neighborhood level and the composition of the spa-
tial environment at the micro street level contribute to the

landscapes, not only facilitate the city's daily transportation
needs but also serve as vital public spaces for social inter-
action and leisure activities among residents. Street vitality,
perceived through the lens of human activity within these
spaces, reflects the concentration of people in streets and
stands as a significant indicator of urban vibrancy!l.Influ-
enced and constrained by the built environment that ac-
commodates human spatial activities, street vitality is
shaped by the continuous organization and succession of
urban functions. Both the aggregation of resources at the

temporal and spatial distribution differences of vitality with-
in urban street spacesl?. Against the backdrop of high-
quality urban development aimed at creating desirable liv-
ing environments, the quality of urban public spaces has
garnered increasing attention from residents. Investigating
the impact mechanisms of the built environment on street
vitality across multiple scales is crucial for fostering hu-
man-centered public spaces and enhancing urban living
environments.
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Existing research has predominantly focused on un-
covering the effects of the built environment on street vitali-
ty, considering both macro neighborhood characteristics
and micro street compositions, and has constructed multi-
element indicators from perspectives such as location, in-
terface accessibility, functionality, and facilities®5l. Early
small-scale case studies based on field research delved
into observing interface characteristics, facility arrange-
ments, and landscape compositions within micro street
spacesl-sl. Subsequently, the advent of the new data wave
has expanded the research scale of street vitality through
the integration of multi-source big data, with POI and road
network data widely applied to measure the density distrib-
ution of neighborhood resources and the accessibility of
transportation and facilities at the urban scalelé-71. However,
compared to the detailed measurements at the neighbor-
hood scale that focus on micro street characteristics, the
large-scale measurements at the urban scale are limited
by data collection and analysis methods, often remaining
at the two-dimensional material space level and seldom
addressing the micro three-dimensional street space char-
acteristics from the perspective of human subjective per-
ception and experience. Recent advancements in machine
learning and image segmentation within the computer sci-
ence field have provided new methodologies for the large-
scale measurement of three-dimensional built environment
indicators of streetsl®l. Related studies, based on image
semantic segmentation and large-scale image recognition
technologies, have automated the extraction of elements
such as sky, buildings, and roads from street view images
to form three-dimensional built environment indicators of
streets, applying these to the measurement and evaluation
of street qualityl®-19], urban functional area identificationl1],
and urban spatial perception(i2l.

In exploring the relationship between the built environ-
ment and street vitality, existing research has predominant-
ly employed linear regression models!3], analyzing the im-
pact differences of various built environment elements on
street vitality based on the linear distribution trends of
sample values among variables. However, traditional linear
regression analysis focuses on exploring the effect of vari-
ables on vitality at a global scale through the linear distrib-
ution differences of indices, neglecting the spatial distribu-
tion patterns of variables at the meso and macro scales.
For streets within a city, the similarity of their regional envi-
ronment and their inherent attractiveness determine a cer-
tain degree of similarity and dependency in attracting peo-
ple among nearby streetsl'4, thereby forming a differenti-
ated distribution of vitality and the built environment in
space. Recently, scholars have utilized the multi-scale ge-
ographically weighted regression model (MGWR) to ex-
plore neighborhood vitalityl'4], housing prices!'s], the pro-
portion of public transport commuting!'€], and their influenc-
ing mechanisms, preliminarily validating its applicability in
studying the differentiation of spatial characteristics at the
urban scale. This method addresses the lack of considera-
tion for spatial heterogeneity in traditional linear regression
models by setting differentiated bandwidths for each vari-
able to form different spatial action scales, thereby provid-
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ing a more realistic explanatory power to the overall spatial
modell17-18],

In summary, this paper takes the central urban area of
Nanchang as a case study, utilizing POI data and OSM
road network data to measure the two-dimensional materi-
al space environment, and further employs street view data
to measure the micro three-dimensional space environ-
ment from the perspective of human subjective perception
and experience. Finally, the multi-scale geographically
weighted regression model (MGWR) is introduced to ex-
plore the temporal and spatial differences in the impact of
various built environment elements on street vitality, offer-
ing insights and references for the differentiated creation of
urban vitality and the enhancement of public space quality.

2. Research Object and Data Sources

2.1. Research Object

The case study area is selected as the central urban
area of Nanchang, Jiangxi Province, with its spatial scope
defined as the area within the Dongxi Lake District and the
Honggutan New District of Nanchang City, which is the
concentrated construction area and highly populated area
of Nanchang City, covering a total area of approximately
114 km2. For convenient comparative analysis, the road
network within the research scope is divided into 651 street
segments, serving as the basic units for this study (Figure
1). As the traditional core area of the city, the central urban
area of Nanchang is the political, economic, and cultural
center of Wuhan City, with a large concentration of popula-
tion, commercial, office, residential, educational, and ad-
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Figure 1 | Distribution of streets in the central urban area
of Nanchang
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ministrative facilities, forming differentiated urban spatial
built environments and human activity distribution charac-
teristics within the region.

2.2. Data Sources and Processing

The basic data of this paper mainly include four cate-
gories: road network data, population heat data, street
view image data, and POI data:

Road Network Data: The road network data of the cen-
tral urban area of Nanchang is sourced from the Open-
StreetMap website (www.openstreetmap.org). Based on
the ArcGIS 10.8 platform, the road network data is cleaned
and topologically processed, and then interrupted at inter-
sections. Subsequently, road buffers are constructed
based on the road centerline with a buffer distance of 55
meters. This range basically includes the road red line
range and its surrounding shops, open spaces, and other
areas that may affect street vitality.

Population Heat Data: The population heat data is
sourced from the Baidu Map Huiyan Big Data Platform
(https://huiyan.baidu.com). Using Python to access the
server's open port, location service data of the central ur-
ban area of Nanchang is collected continuously for 24
hours from May 5, 2025, to May 11, 2025, with the data
format being "longitude_latitude_value". Since the activity
state of people when using mobile devices is mostly walk-
ing or staying, the instantaneous positioning data generat-
ed in this state can effectively reflect the real location in-
formation of people at specific timesl['9l.

Street View Data: The street view data is obtained from
the Baidu Street View Application Programming Interface
(http://bsyun.baidu.com). First, based on the vector road
network of the central urban area of Nanchang, a sampling
point coordinate is obtained every 100 meters, and a
Python program is written to call the server interface to
obtain panoramic images of the sampling points. A total of
35,687 panoramic street view images are collected starting
from May 2024. Then, the PSPNet model pre-trained on
the MIT ADE20K dataset is used to semantically segment
the panoramic images, identifying and calculating the area
proportion of street built environment elements such as
sky, green plants, buildings, and roads in the street view
images. PSPNet, as a commonly used method in street
view image semantic segmentation, effectively reduces the
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probability of misidentification by applying a pyramid pool-
ing module to extract and fuse multi-layer features of im-
ages, and is one of the current image recognition algo-
rithms with high data classification accuracy!?0l.

POI Data: The POI data is sourced from Tencent Maps,
with the acquisition time being June 2024. The data covers
16 major categories including food, corporate enterprises,
hotels, tourist attractions, and infrastructure, and has ad-
vantages in describing the functional diversity of streets
and the spatial distribution of stations. Considering the
spatial layout forms on both sides of roads of different
grades, a total of 132,316 POI points are obtained after
intersecting with the street buffers within the research
scope through the ArcGIS 10.8 platform.

3. Research Methods and Technical Path
3.1. Indicator Construction

3.1.1.Measurement of Street Vitality Intensity

Referring to existing research on the scale measure-
ment of street vitality, this paper quantifies street vitality as
the aggregation intensity of people staying or walking slow-
ly in space. First, based on the acquired location service
data, population heat points are visualized on the ArcGIS
10.8 platform according to coordinate information and val-
ue values. Second, through kernel density analysis, popu-
lation heat points are generated into heat grids with a
search radius of 200 meters and a cell size of "20 meters x
20 meters", totaling 128 images. Using the natural break-
point mean of each grid as the division standard, the re-
classification tool is used to divide the heat grid values into
7 levels, and then the raster to polygon tool is used to vec-
torize the graded heat grids. Finally, the vector grids are
intersected with each road buffer, and based on the face
data with vitality intensity levels within the intersected buf-
fer and the buffer area, a weighted average is performed to
obtain the vitality intensity value of each road segment.
The specific calculation formula is as follows:

Regression

Multiscale Geographically Weighted

Figure 2 | Technical Path
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Table 1 | Calculation statistics of the built environment elements
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Built environment Evaluation level

Evaluation metrics

Quantification of metrics

Traffic convenience

Two-dimensional built
environment

facility convenience

Space comfortability

Three-dimensional built
environment

environmentl safety

The nearest distance to a
transportation station

Parking lot density

Convenience

Functional mixing degree

Catering function

Entertainment function

Shopping function

Sky openness

Green light rate

Architectural Continuous
Process

Enclosure degree

Road surface feasibility

Relative pedestrian width

Traffic safety

Using the Nearest Facility Point Analysis
tool in ArcGIS 10.8 software, the actual
distances from the midpoint of streets to the
nearest bus stops and subway stations
were calculated to reflect the accessibility of
the streets

The number of parking lots within a 55-
meter buffer zone on both sides of the
street centerline

The accessibility of a street to nearby
streets was analyzed by calculating the
ratio of the number of street intersections to
the length of the street.

The location entropy of major points of
interest (POIs) within the street buffer zone
reflects the diversity of facilities

The ratio of the number of catering facilities
within a 55-meter buffer zone on both sides
of the street centerline to the length of the
street was calculated using the ArcGIS
Spatial Join tool

The ratio of the number of Entertainment
within a 55-meter buffer zone on both sides
of the street centerline to the length of the
street was calculated using the ArcGIS
Spatial Join tool

The ratio of the number of accommodation
hotels within a 55-meter buffer zone on both
sides of the street centerline to the length of
the street was calculated using the ArcGIS
Spatial Join tool

The average proportion of sky elements in
street view images within the street unit
reflects the degree of spatial openness

The average proportion of vegetation
elements in street view images within the
street unit reflects the level of greenery

The standard deviation of the building-to-
space ratio within a street reflects the
degree of continuity of the building
interface.

The ratio of buildings, walls, columns,
fences, and trees within street view images
reflects the degree of enclosure in the street
space

The average ratio of pedestrian walkways
to roadways within the street reflects the
scale of pedestrian space

The average ratio of pedestrian pathways to
roadways within a street reflects the scale
of pedestrian space.

The proportion of the midpoint of the street
to traffic safety facilities, along with the
average ratio of railings and columns within
the street, reflects the level of traffic safety,
as well as the distance to the nearest
subway entrance
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Where Q isthe street vitality intensity, Q; is the vitality
intensity level corresponding to the i-th unit within the
street, A, is the area of unit i, and 7 is the number of face
data of each level within the road buffer. The built environ-
ment indicators that meet the conditions are used as inde-
pendent variables to construct the MGWR model with
street vitality at each time period to explore the temporal
and spatial differences in the impact of different built envi-
ronment elements on street vitality .

3.1.2.Measurement of Built Environment Indicators

Referring to the existing indicator composition of street
vitality influencing factorsl21-22], 14 built environment ele-
ments are preliminarily selected for measurement from four
levels: transportation accessibility, facility conveuilt envi-
ronment includes 8 indicators such as sky openness, en-
closure degree, and green view rate, reflectinnience, spa-
tial comfort, and environmental safety, including two-di-
mensional spatial environment indicators focusing on
macro neighborhood characteristics and three-dimensional
spatial environment indicators focusing on micro street
composition. Among them, the three-dimensional bg the
micro street spatial composition environment from the per-
spective of human subjective perception and experience at
the three-dimensional level. These indicators can provide
references for the design of local street spaces and the
improvement of human settlements. The composition and
calculation rules of each indicator are shown in Table 1.

3.2. Analysis Methods

This paper adopts the multi-scale geographically
weighted regression model to explain the temporal and
spatial differences in the impact of two-dimensional and
three-dimensional built environments on street vitality. The
multi-scale geographically weighted regression model
(MGWR) improves on the classic geographically weighted
regression model (GWR) by addressing the limitation that
variables can only choose the same bandwidth.

The model sets different bandwidths for each variable
to present different scale characteristics. The smaller the
bandwidth selected for a variable, the smaller its impact on
the overall spatial scale and the stronger its spatial hetero-
geneity. Conversely, the larger the bandwidth selected for a
variable, the more stable it is on the global scalel?3]. The
calculation formula is as follows

k
Yi= 21 P (Ui v)Xij + €; )
1=
Where X;; is the j-th predictor variable, (U;, U,) are
the centroid coordinates of street segment i, and ﬁbwj rep-
resents the bandwidth of the regression coefficient for the j
-th variable. This study uses MGWR 2.2 software for model

calculation and completes visual analysis based on the
ArcGIS 10.8 platform

3.3. Technical Path

First, Baidu Huiyan population heat data is used to
measure and deconstruct the temporal and spatial varia-
tion characteristics of street vitality in the central urban

area of Nanchang at different times of the day. Second,
POI data, OSM road network data, and Baidu street view
data are used to measure the two-dimensional and three-
dimensional built environment. Finally, spatial autocorrela-
tion analysis and linear regression analysis are used to
screen variables.

4. Temporal and Spatial Variation
Characteristics of Street Vitality in the
Study Area

4.1. Temporal Variation Characteristics of Street
Vitality Intensity

To intuitively reflect street vitality, the calculated aver-
age heat value of streets is represented as a line chart.
The statistical results are shown in Figure 3: The fluctua-
tion situation can be roughly divided into four stages: the
morning period from 7:00 to 11:00, the noon period from
11:00 to 15:00, the afternoon period from 15:00 to 19:00,
and the night period from 19:00 to 23:00. During different
times of the day, there are multiple transient heat peaks.
Street vitality reaches its first peak at 12:00, consistent with
the rapid gathering of people during the morning peak pe-
riod. From 12:00 to 14:00, it gradually decreases. After
that, entertainment and commercial activities in the central
urban area gradually become active. Due to the influence
of the evening peak and nightlife activities, the number of
people in the streets reaches a peak around 20:00, but
after that, gathering activities gradually decrease, leading
to a rapid decline in street vitality.

The Baidu heat data is divided into 6 levels using the
natural breakpoint method, with levels 1-2 classified as low
vitality areas, levels 3-4 as medium vitality areas, and lev-
els 5-6 as high vitality areas. The Baidu heat data obtained
through vectorization processing is used to count the area
proportion of each level, and the proportion of streets with
different vitality levels is studied. The statistical results are
shown in the table.

Analyzing the proportion of streets with different vitality
levels, it can be seen that during the morning peak from
7:00 to 9:00, the proportion of high vitality streets and
medium vitality streets is low, and they start to rise with
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Figure. 3 | Variation of Overall Street Vitality in the Central
Urban Area of Nanchang
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Table. 2 | Statistics of Instantaneous Vitality Intensity Proportion in Streets of Central Urban Area of Nanchang

Time period Type of fluctuation Heat value Volatility
07:00-11:00 Rapid rise 290-339 0.17
11:00-13:00 Slowly rising 339-370 0.09
13:00-15:00 Slow descent 370-347 -0.06
15:00-17:00 Slowly rising 347-367 0.06
17:00-19:00 Rapid rise 367-409 0.1
19:00-21:00 Slowly rising 409-429 0.05
21:00-23:00 Fast descent 429-340 -0.21

roughly the same trend. Due to the relatively dispersed
distribution of people during lunch time, the proportion of
high vitality streets and medium vitality streets shows a
slow downward trend from 11:00 to 13:00. At 18:00 in the
afternoon, the proportion of medium vitality streets is rela-
tively high, reaching a vitality peak. At 20:00 at night, the
proportion of high vitality streets is relatively high, reaching
a vitality peak, while the proportion of medium vitality
streets is relatively low. This phenomenon can be at-
tributed to the further gathering of people's activities in the
central urban area at night. It can be inferred that the in-
tensity of people's activities in the morning is usually higher
than that during the noon period. The density of people in
the neighborhood gradually increases after lunch time, in-
dicating that the leisure activities of neighborhood people
usually reach a peak from after lunch time to the evening.

4.2. Spatial Differentiation Characteristics of
Street Vitality Intensity

To further explore the spatial differentiation characteris-
tics of street vitality at different times of the day, especially
during the main activity periods, the average vitality of
streets during four time periods: 7:00-11:00 (morning),
11:00-15:00 (noon), 15:00-19:00 (afternoon), and
19:00-23:00 (night) is visualized. The analysis results in
the spatial distribution map of the comprehensive heat val-
ue of streets on weekdays (Figure 4). From Figure 4, it can
be seen that the overall street vitality in the central urban
area of Nanchang shows a spatial differentiation pattern of
"east core, west belt, multi-point aggregation”, with medi-
um and high value areas forming differentiated distribu-
tions with time changes. It can be seen that high vitality
streets and medium vitality streets on weekdays are mostly
concentrated in the central part of the old city, and the vital-
ity of streets in the north is significantly higher than that in
the south. Specifically, high vitality streets are mainly con-

Table 3 | Statistics of Instantaneous Vitality Intensity Proportion in Streets of Central Urban Area of Nanchang

8:00 10:00 12:00 14:00
Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio
ngggr?ar;etrgy 10 1.54% 30 4.61% 45 6.91% 33 5.07%
Mid-energy %6 14.75% 123 18.89% 18 18.13% 112 17.20%
street
'-°";;f;§r9y 545 83.72% 498 76.50% 488 74.96% 506 77.73%
16:00 18:00 20:00 22:00
Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio
High-energy 44 6.76% 55 8.45% 71 10.91% 48 7.37%
street
M"i'tfg:trgy 136 20.89% 147 22.58% 102 15.67% 95 14.59%
Low-energy 471 72.35% 449 68.97% 478 73.43% 508 78.03%

street
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Figure 4 | Spatial Variation of Street Vitality Intensity Across
Different Time Periods

centrated in the cultural and tourism integration area with-
in the Wanshou Palace historical urban area and the tradi-
tional commercial center area of Zhongshan Road-Shengli
Road Pedestrian Street. Although this area is an old city, it
has a large concentration of shopping, dining, and ac-
commodation resources, rich tourism resources, complete
public service functions, and well-equipped living facilities.
Secondly, the central area of Honggutan, centered on
Central Financial Street, also has high street vitality, in-
cluding CBD, Qiushui Square, etc. This area has well-
equipped commercial facilities and high transportation ac-
cessibility, making it easy to gather vitality. It can be seen
that the street vitality in the central urban area shows a
trend of decreasing from the central area on both sides of
the Gan River to the suburbs, and a distribution of central
aggregation and stronger north than south.

5.Spatiotemporal Heterogeneity in the Impact
of Street-Level Built Environment on Urban
Vitality Intensity: a Multiscale Analysis

5.1.Analytical Framework for MGWR Model
Results

5.1.1.Screening of Built Environment Indicators

First, spatial autocorrelation analysis is conducted on
the 14 built environment indicators, and the results show
that all variables have obvious clustering characteristics in
space. From the global Moran's index statistics, the near-
est distance to comprehensive shopping malls, proximity,
and the nearest distance to transportation stations have
very strong clustering characteristics (Table 4). Then, ordi-
nary least squares (OLS) is further used to perform re-
gression analysis with the 14 multi-dimensional built envi-

Table 4a | Results of Spatial Autocorrelation and Multicollinearity Diagnostics for the Built Environment

Two-dimensional built environment

First-level indicators

Traffic convenience

facility convenience

Transportat

Functional

Secondary indicators ion Parklng lot Connectivity mixing Caterllng Entertalr]-ment Shopplng
. density function function function
distance degree
Global
Moran's
b 0.440341  0.334867  0.682102 0.252610  0.167312 0.297193 0.777576
Numeric
Space-time self-
correlation Variance ~ 0.000004  0.000004  0.000004 0.000004  0.000004 0.000004 0.000004
Z score 171'26515 225";1422 348521286 129.080649 85559826  152.102850 397'%4371
P-value  0.000000  0.000000  0.000000 0.000000  0.000000 0.000000 0.000000
. . Variance
%‘:!gﬁgs'r:tsy inflaton ~ 1.563141  1.494003  1.590602 1645913  1.385783 1.747346 1.505872

factor
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Table 4b | Results of Spatial Autocorrelation and Multicollinearity Diagnostics for the Built Environment

Three-dimensional built environment

First-level indicators

Space comfortability

environmentl safety

Architectura

Road Relative

A Sky Green light | Enclosure . Traffic
Secondary indicators . surface pedestrian
openness rate Continuous degree feasibilit width safety
Process y
Global
Moran's
index 0.144728 0.235639 0.089482 0.317182 0.084996 0.089482 0.112461
Numeric
Space-time self-
correlation Variance 0.000004 0.000004 0.000004 0.000004 0.000004 0.000004  0.000004
Z score 171.765156 162.072935 45.788505 129.080649  45.194476  185.559826 57.571604
P-value 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000  0.000000
Collinearity Variance
Di . inflation 1.252827 1.371032 1.420298 3.133947 1.065539 1.385783 1.058528
iagnosis factor

ronment elements as independent variables and the street
vitality values at each time period as dependent variables.
The results show that the VIF values of all independent
variables are far below 75 (Table 4), indicating that there is
no multicollinearity problem among the variables. However,
the probability p-values of relative pedestrian width and
building continuity are greater than 0.01 in all time periods,
indicating that their impact on street vitality is not signifi-
cant and needs to be excluded. Finally, the remaining 12
built environment indicators participate in the subsequent
model construction.

5.1.2.Model Regression Results

According to the temporal variation characteristics of
street vitality intensity, the street vitality and built environ-
ment indicators of the four time periods are introduced into
the multi-scale weighted regression model for analysis
(Table 5). The results show that the average adjusted R? of
the MGWR model in each time period is 0.844, indicating
that its overall explanation degree of street vitality changes
in the central urban area of Nanchang is as high as 84.4%
on average. Subsequently, based on the regression coeffi-
cients, variable interpretability, and spatial action scale
(bandwidth), the temporal and spatial effects of different
built environment elements on street vitality in each time
period are further analyzed. The regression coefficients of
the three-dimensional built environment indicators are rela-
tively high overall, but there are differences in variable in-
fluence and interpretability in different time periods.

5.2. Spatiotemporal Differences in the Impact of
Two-Dimensional Built Environment on Street
Vitality

5.2.1.Temporal Differences in the Two-Dimensional
Built Environment

(1) Transportation Accessibility

Parking lot density showed a positive correlation with
street vitality across all time periods, with higher signifi-
cance overall. lts influence was stronger in the morning
and midday compared to the afternoon and evening, indi-
cating that the capacity for vehicle parking in street spaces
positively promotes vitality. Connectivity also demonstrated
a positive impact on vitality, particularly during daytime
hours when pedestrian accessibility attracts natural travel
choices. However, the average distance to the nearest
transportation hub exhibited a negative correlation with
street vitality across all periods, though its explanatory
power was negligible. This may be due to the relatively
balanced distribution of transportation hubs in Nanchang's
central urban areal®, resulting in minimal differences in
accessibility between streets (Figure 5).

Facility Accessibility

The explanatory power of dining facilities on street vital-
ity (37.79%-68.97%) remained consistently high across all
periods. This is primarily because dining facilities cater to
various needs throughout the day, including breakfast,
lunch, afternoon tea, dinner, and late-night snacks, ensur-
ing a steady flow of people and sustaining street vitality.
Shopping facilities had the highest absolute regression
coefficients (0.159-0.234) across all periods, with their pos-
itive influence peaking during the evening. Their explanato-
ry power (51.831%-70.20%) was also consistently high,
highlighting the strong promotional effect of commercial
activities on street vitality. However, the localized clustering
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Table 5 | Statistical Summary of Regression Results from the Multiscale Geographically Weighted Regression (MGWR) Model

07:00-11:00 11:00-15:00 15:00-19:00 19:00-23:00
Variable Bandwi  Averag .V?:ra ?ft Bandwi  Averag i\r/]?;i%?ﬁ Bandwi  Averag i\r/ﬁ;i%t;ﬁ Bandwi  Averag i\r/]?;i%t;z
dth e value mabilri)ty e value ability dth e value ability dth e value ability
The nearest
t‘f;ﬁ:;gﬁatﬁoi 221 -0.053 0 189  -0.012 0 650  -0.041 0 650  -0.023 0
station
Parking lot density 646 0.082 100 650  0.081 100 507  0.075 7358 650  0.057  57.93
Convenience 650  0.181  80.65 650  0.133  57.31 252 0136  57.30 268 0.118  56.99
Functional mixing 650  -0.065 0 650  -0.066 0 650  -0.067 0 650  -0.115 0
degree
Catering function 650  0.070  37.79 650  0.072  58.06 650  0.093  58.06 650  0.074  68.97
E”tfirrt]iit?or:‘]e”t 650  0.002 1475 650  0.010  17.97 650 0011  51.77 650  0.009  39.63
Shopping function 257 0159  62.83 236 0158  70.20 249 0195  51.31 236 0234 7020
Sky openness 650  -0.348 100.00 650  -0.073 100.00 650  -0.327  77.57 650  -0.338 100
Green light rate 338 0.605 0 198  -0.227 0 439 0.571 0 447 0787 0
Enclosure degree 431 -1.313 0 650  0.108 0 431 -1.244 0 419 -1.568 0
Road surface 205 0011 7450 650  0.001  64.71 650  0.003  59.91 650  0.011 3594
feasibility
Traffic safety 650 0216  53.92 650  0.032  54.84 650  0.205  36.71 148 0257 1413
Adjusted R-squared 0.835 0.843 0.852 0.846

Note: Variable interpretability represents the percentage of the total sample size with significant coefficients (p < 0.05) for explanatory variables.

of commercial facilities led to spatially significant variations
in their explanatory power.

Entertainment facilities showed an increasing positive
correlation with street vitality as the day progressed, peak-
ing in the evening. This indicates that the impact of leisure
and entertainment facilities on street vitality is more pro-
nounced at night due to their primary usage times. Func-
tional mix exhibited a negative correlation with street vitali-
ty across all periods, suggesting that streets with lower
functional mix tend to concentrate vitality more effectively.
Specifically, streets dominated by single-use commercial
activities are more likely to attract consumer behavior, with
clear travel purposes for various facilities, especially at
night.

5.2.2.Spatial Differences in the Two-Dimensional Built
Environment

To explain the spatial heterogeneity of the influencing
factors, ArcGIS 10.8 was used to visualize the coefficients
of significant factors during the main activity periods. The
spatial patterns of some variables are shown in Figures 6
and 7. Overall, connectivity, as a global variable, exhibited
the most stable spatial influence on street vitality, followed
by parking lot density. Entertainment and dining facilities
showed significant spatial heterogeneity, while shopping
facilities displayed distinct spatial differentiation.
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Figure 5 | Distribution of the Nearest Distance to Trans-
portation Stations and Density of Entertainment Facilities
in Streets

Specifically, the impact of connectivity on street vitality
showed minimal spatial variation, with its positive influence
gradually increasing from north to south throughout the
day. High-value areas were concentrated in Jiuzhou and
Chaonong streets in Xihu District, where parks and educa-
tional facilities are abundant, facilitating pedestrian activi-
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Figure 7 | Spatial Distribution of Regression Coefficients for Facility Convenience

ties such as sightseeing and commuting. In contrast, areas  purpose-driven pedestrians unaffected by street connectiv-

like Honggutan District's Hongjiaozhou and Jiulonghu ity.

streets, as well as Baihuazhou Street in the historical dis- The positive impact of parking lot density on street vital-

trict, showed no significant impact due to the high density ity generally increased from the central to the western ar-

of transportation and educational facilities, which attract eas. High-value areas were clustered in Dinggong Road
and Pengjiagiao streets in Donghu District, where limited
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Figure 9 | Spatial Distribution of Regression Coefficients
for Spatial Comfort

vehicle access in the historical district necessitates parking
before entering, enhancing the influence of parking density
on vitality. In other areas, the availability of public trans-
portation, such as subways and buses, reduced the re-
liance on parking facilities.

Dining facilities exhibited a positive influence on street
vitality that decreased from the central to the western ar-
eas. High-value areas were concentrated in Dinggong
Road and Shengjin Tower streets in Donghu District, where
local cuisine in the old town enhances street attractive-
ness. Entertainment facilities showed positive correlations
and significance in the afternoon and evening, with their
influence decreasing from the central to the western areas.
High-value areas were mainly located in the historical dis-

tricts of Donghu and Xihu Districts, where abundant
tourism and leisure resources attract visitors and sustain
high street vitality.

Commercial facilities displayed localized clustering in
their positive influence on street vitality, with high-value
areas concentrated in Tengwang Pavilion Street in Xihu
District and Shajing Street in Honggutan District. These
areas feature a mix of traditional and chain commercial
establishments, attracting both local residents and tourists
and enhancing street vitality.

5.3. Spatiotemporal Differences in the Impact of
Three-Dimensional Built Environment on
Street Vitality

5.3.1.Temporal Differences in the Three-Dimensional
Built Environment

As shown in Figure 8, the regression coefficients of the
built environment indicators across the four time periods
were generally low, with significant variations in influence
and explanatory power across different periods.

Spatial Comfort

The explanatory power of green view ratio and enclo-
sure degree was negligible. This may be due to the dis-
persed distribution of greenery along roads and the relative
clustering of vegetation around natural landscapes, render-
ing the green view ratio ineffective in explaining vitality.
High pedestrian flow streets may not be significantly af-
fected by enclosure degree, as the existing foot traffic is
sufficient to sustain street vitality. Sky view openness ex-
hibited a negative correlation and was significant across all
four periods. Its negative influence gradually increased
during the daytime, peaking in the afternoon. This is likely
because streets with high sky view openness often lack
building or tree cover, leading to functional monotony and a
lack of commercial, cultural, or social activities that attract
pedestrians. In the afternoon, people tend to gather in work
areas, amplifying the impact of sky view openness on
street vitality.

Environmental Safety

The average regression coefficient of walkability ratio
showed a positive correlation with street vitality across all
periods, with high explanatory power (35.94%-74.50%). Its
positive influence was stronger in the morning and after-
noon, as these periods involve commuting activities. A
well-maintained pedestrian environment supports walking,
cycling, and other modes of transportation, increasing
street usage and attracting more customers, thereby pro-
moting commercial activity. In contrast, traffic safety facili-
ties had lower explanatory power (14.13%-54.84%), with
their positive influence peaking in the afternoon when
commuting demand is high. Properly designed traffic facili-
ties can optimize traffic flow, reduce congestion, and en-
hance street attractiveness.

5.3.2.Spatial Differences in the Three-Dimensional
Built Environment

As shown in Figure 9, sky view openness, as a global
negative correlation variable, exhibited a spatial pattern of
higher influence in peripheral areas and lower influence in
central areas. High negative impact areas were concen-
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Figure 10 | Spatial Distribution of Regression Coefficients
for Traffic Safety

trated in Hongjiaozhou and Jiulonghu streets in the south-
western part of the central urban area, where large trans-
portation and entertainment facilities dominate, and pedes-
trian activities are more purpose-driven. In contrast, Tao-
hua Street and Shengjin Tower Street in the southern his-
torical district showed relatively lower impacts on street
vitality. These areas feature scenic landscapes and iconic
buildings, where high sky view openness does not signifi-
cantly affect pedestrian destinations or street activities.

As shown in Figure 10, the positive influence of walka-
bility ratio on street vitality exhibited a spatial pattern of
higher values in the west and lower values in the east.
High-value areas were concentrated in Hongjiaozhou and
Jiulonghu streets in the Honggutan New District, with addi-
tional clustering in Shajing Street during midday. This may
be due to the presence of large commercial and office fa-
cilities in these areas, where pedestrians primarily use
sidewalks for dining and commuting activities during
lunchtime. The influence of traffic safety facilities on street
vitality was concentrated near the historical district during

JSBE | Vol. 2 No. 2 | March 2025 | 39

midday and afternoon periods. This is because these peri-
ods involve diverse pedestrian activities, and the historical
district's commercial vibrancy, combined with fewer vehicle
lanes, enhances the pedestrian environment, attracting
more customers and promoting commercial activities.

6. Conclusions and Discussion

This paper takes the central urban area of Nanchang as
a case study, uses population heat data to measure and
deconstruct the temporal and spatial differences of street
vitality, uses OSM road network data and POI data to
measure the two-dimensional material space environment,
further uses street view images to measure the micro
three-dimensional street space environment based on hu-
man subjective perception and experience, and uses the
multi-scale geographically weighted regression model to
explore the differentiation characteristics of multi-dimen-
sional built environment and urban street vitality in time
and space. The main conclusions are as follows.

The temporal and spatial distribution differences of
street vitality in the central urban area of Nanchang are
obvious. In terms of time, residents' activities on the streets
are mostly concentrated from 6:00 to 23:00, with the high-
est proportion of medium and high vitality streets from 9:00
to 18:00. In terms of space, the spatial structure of street
vitality generally shows a differentiation pattern of "east
core, west belt, multi-point aggregation", and the aggrega-
tion characteristics are most obvious in the afternoon.

The impact of the two-dimensional built environment on
street vitality is generally more significant than that of the
three-dimensional built environment. Specifically, among
the two-dimensional built environment indicators, parking
lot density, connectivity, and shopping facility density have
high interpretability for street vitality in all time periods,
while catering facility density and entertainment function
have high interpretability in some time periods. Among the
three-dimensional built environment indicators, only sky
openness and road surface feasibility have high inter-
pretability for street vitality in most time periods.

The temporal and spatial heterogeneity of the impact of
each built environment element on street vitality is obvious.
In terms of transportation accessibility, the positive influ-
ence of connectivity on street vitality generally increases
from north to south in space in all time periods
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