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ABSTRACT

This research addresses the challenge of predicting deviations in the
landing positions of objects dropped into water, with important implica-
tions for cultural tourism safety near lakes, rivers, and other natural
attractions. An innovative optimization method for search strategies
based on machine learning is proposed. A simulated dataset incorpo-
rating features such as drop height, water entry angle, drag coeffi-
cient, and object density enables detailed model comparisons. Five
machine learning models—XGBoost, Random Forest, Decision Tree,
Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP)—
are evaluated using Mean Squared Error (MSE), Mean Absolute Error
(MAE), and the Coefficient of Determination. Experimental results
show that XGBoost significantly outperforms the others, effectively
capturing complex nonlinear relationships through its gradient boost-
ing mechanism. In contrast, models like Decision Tree, SVM, and
MLP exhibit lower predictive accuracy due to weaker generalization
capabilities. This study provides a robust machine learning-based
framework to enhance predictive accuracy and search efficiency in
aquatic environments.

Introduction

With the rapid expansion of China's tourism industry,

In highly crowded tourist environments, accidental wa-
ter drops of personal belongings frequently occur as

renowned tourist cities such as Hangzhou have wit-
nessed a significant surge in visitor numbers. As a key
component of the "Paradise on Earth," Hangzhou, with
its unique tourism resources, welcomed over ten million
visitors during the May Day Golden Week, with nearly
70% being interregional tourists. While this tourism
boom has driven local economic growth, it has also giv-
en rise to various management and service challenges.

visitors enjoy the scenery and leisure activities. In par-
ticular, the unintentional dropping of valuable items,
such as smartphones, has become a notable social
concern, highlighting the growing importance of cultural
tourism safety. Ensuring the rapid and effective retrieval
of such items is not only crucial for enhancing the
tourist experience but also for maintaining the safety
reputation of popular tourist destinations.[1].
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In response to the challenges associated with recov-
ering lost items in aquatic environments, numerous
scenic areas have begun to utilize specialized underwa-
ter retrieval devices that are designed to facilitate the
prompt recovery of submerged objects [2]. It is impor-
tant to recognize, however, that the path taken by these
submerged items is subject to a variety of influences.
Key factors that affect their trajectory include the physi-
cal characteristics of the objects themselves, such as
their density, shape, and mass, as well as the environ-
mental conditions of the water body in which they are
located. For instance, elements like flow velocity, water
drag, and prevailing weather conditions can all signifi-
cantly impact the drift of these objects. As such, accu-
rately predicting the potential drift range of lost items
and creating effective strategies for searching them
poses considerable technical difficulties in the realm of
retrieval operations [3]. To address these issues and
contribute to enhanced cultural tourism safety, this
study aims to tackle these challenges by combining
physical modeling techniques with data-driven method-
ologies to predict the drifting trajectories of submerged
objects more accurately. Furthermore, it seeks to lever-
age cutting-edge intelligent algorithms, including those
based on deep learning and reinforcement learning, to
refine and enhance search strategies for locating these
lost items. By engaging in empirical research focused
on the movement behaviors of objects in the complex
water conditions present in the scenic areas of
Hangzhou, this research endeavors to create a com-
prehensive retrieval decision support model. This model
is intended to provide valuable scientific guidance and
practical operational insights that can be employed in
real-world search and retrieval operations, ultimately
improving the efficiency and effectiveness of recovery
efforts in aquatic settings, and promoting a more secure
and reassuring cultural tourism environment for both
tourists and site managers alike [4].

Related Work

The task of locating objects in aquatic environments
has long faced technical bottlenecks. Traditional re-
trieval operations mainly rely on manual observation
and empirical analysis, which suffer from significant
drawbacks such as high resource consumption and low
positioning accuracy, often leading to inefficient search-
es and potential economic losses. To address this chal-
lenge, recent years have seen several innovative re-
search advancements in the field of information re-
trieval. Anari et al. [5] integrated learning automata with
swarm intelligence algorithms, optimizing search quality
through ant colony behavior simulation. Wu et al. [6]
developed an intelligent prediction model to solve bulk
multi-item ordering problems, enhancing decision-mak-
ing efficiency by combining machine learning with oper-
ational research methods.Furthermore, a series of pio-
neering studies have made breakthroughs in text infor-

mation processing and recommendation algorithms.
Notable works include the generalized nearest-neighbor
retrieval framework proposed by Chen et al. [7], the
personalized retrieval system based on graph con-
trastive learning by Li et al. [8], the adaptive k-nearest
neighbor algorithm by Yadav et al. [9], and the intelli-
gent clustering detection architecture designed by Shah
et al. [10]. However, it is worth noting that most existing
algorithmic frameworks are primarily designed for struc-
tured data and high-dimensional feature spaces,
whereas aquatic environments exhibit significantly dif-
ferent dynamic characteristics. The complex interplay of
water flow, drag effects, and sedimentation dynamics
introduces strong nonlinearities in the movement trajec-
tories of submerged objects. This unique setting makes
it difficult for traditional data clustering methods and
indexing optimization techniques to construct effective
motion prediction models.

In order to meet the unique requirements of aquatic
operations, this study introduces a groundbreaking so-
lution that merges physical modeling with advanced
intelligent algorithms. By integrating techniques such as
XGBoost, deep neural networks, and ensemble learn-
ing, the research establishes a robust hydrodynamic
feature learning model. This innovative model utilizes
real-time environmental parameters to enhance the
process of dynamic path planning. Unlike traditional
manual search strategies that heavily depend on sub-
jective experience, this data-driven approach excels in
accurately capturing the complexities of fluid dynamics.
Consequently, it is capable of generating precise pre-
dictions regarding optimal search areas, which in turn
leads to a remarkable increase in the efficiency of ob-
ject retrieval. Furthermore, this method not only stream-
lines the search process but also minimizes overall re-
source consumption, highlighting the advantages of
employing a systematic, algorithm-based strategy in
aquatic environments. By improving the accuracy and
speed of retrieval operations, the proposed approach
also contributes to a more responsive and intelligent
cultural tourism safety management system, particularly
in high-traffic scenic spots where accidental water drops
are frequent..

Machine Learning-Based Search Strategy for
Dropped Objects in Water Bodies

This research utilizes a modeling strategy based on
data, incorporating machine learning techniques to
forecast the movement of objects that have fallen into
water settings. By assessing the predictive capabilities
of various algorithms regarding object displacement,
the research seeks to establish a solid foundation for
effectively locating waterborne objects in real-life search
and retrieval operations.



Simulation Dataset Construction

In this study, the dataset for dropped objects in water
bodies is generated through randomized simulation of
physical parameters, serving as training and evaluation
data for machine learning models. Each data entry in
the dataset represents a simulated object drop event
and includes the following input features and output
variables[11].

In this study, the motion trajectory of objects after fall-
ing into water is primarily influenced by gravity, fluid

Table 1 | Dataset Field Descriptions

Variable Name Description Unit
Height Drop height m
Angle °

Water Resistance =~ Water resistance coefficient -
Density Object density g/lcm?
Xd”-f, Horizontal displacement m

Yirife Settling depth m

resistance, water entry angle, and object properties [12]
(such as density and shape). Due to the complexity of
water bodies, precise modeling typically involves nu-
merical simulations of fluid dynamics, such as the
Navier-Stokes equations. However, solving these high-
order differential equations is computationally expen-
sive and complex. Therefore, this study adopts a simpli-
fied physical modeling approach, assuming a static wa-
ter environment to model the object’'s descent process,
leading to the following trajectory calculation formulas:

X _ H.sin(0). W
drift — Des 0

H.cos@). W

Y = ey

H: Drop height, 8: Entry angle, W: Water resistance
coefficient, Des: Object density, X, Horizontal dis-

placemen, Y, Vertical depth. As the entry angle in-

creases, horizontal drift increases (the object moves
forward more), while vertical settling decreases (since
larger angles result in more horizontal motion). When
the water resistance coefficient increases, settling
slows, and drift increases. Conversely, as object density
increases, settling accelerates, and drift decreases[13].

By leveraging hydrodynamic theory under a still-water
assumption, the derived equations for horizontal drift
and vertical depth provide effective predictions of final
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Figure 1 | MLP Model Architecture

object positions. Compared to traditional computational
fluid dynamics (CFD) [14] simulations, this approach
requires lower computational resources, making it suit-
able for training machine learning models to support
waterborne object search operations.

Introduction to Deep Learning Model

MLP Models In recent years, the development of deep
learning has made the Multilayer Perceptron (MLP) [15]
a research hotspot. It has been widely applied in fields
such as image processing, speech recognition, and
natural language processing, achieving remarkable re-
sults in tasks like object detection, image classification,
semantic segmentation, and machine translation.

MLP is a feedforward neural network architecture ca-
pable of mapping input vectors to output vectors. Its
network structure typically consists of multiple fully con-
nected neuron layers, where each neuron, except those
in the input layer, employs a nonlinear activation func-
tion and is trained using the backpropagation algorithm.
During model training, the network weights are first ini-
tialized. Then, the input data undergoes forward propa-
gation to compute the weighted sum in hidden layers,
which is transformed by the activation function to obtain
the output.[16] Finally, the output layer generates the
prediction results, and a loss function, such as Mean
Squared Error (MSE) or Cross Entropy, is computed
based on the ground truth labels. The backpropagation
algorithm is then used to compute gradients and opti-
mize network parameters. The MLP model architecture
is illustrated in Figure 1.

This paper presents a four-layer Multi-Layer Percep-
tron (MLP) model, which consists of an input layer,
three hidden layers, and an output layer. The design of
this model facilitates the effective capture of intricate
data patterns within the dataset, significantly boosting
its overall learning capability.

a. The input layer plays a crucial role in the model by
receiving the raw data inputs. In this layer, each neu-
ron is designated to correspond to a specific feature



34 | Research Articles

of the input data, ensuring that all relevant attributes
are adequately represented for subsequent process-
ing.

b. The hidden layers, on the other hand, are integral to
the model's function, as they perform the core oper-
ations of feature extraction and data mapping. The
architecture of these hidden layers is fully connect-
ed, meaning that every neuron in a given layer is
linked to all neurons in the previous layer. In this
constructed model, three hidden layers have been
implemented, and they utilize the ReLU (Rectified
Linear Unit) activation function. This choice of acti-
vation function is particularly advantageous as it en-
hances the model's ability to represent nonlinear
relationships within the data, further improving its
performance and learning efficiency.

c. The output Layer: Responsible for generating the
final prediction results. The number of neurons and
the activation function in the output layer depend on
the specific task requirements. For instance, binary
classification tasks typically use the Sigmoid activa-
tion function, whereas multi-class classification tasks
utilize Softmax

Decision Tree Model The decision tree model is rec-
ognized as a simple yet powerful tool in the field of data
mining, commonly utilized in both classification and re-
gression tasks. This model operates by creating a tree-
like structure that transforms complicated decision-mak-
ing processes into a series of straightforward judgments
[17]. By doing so, it allows for more effective data seg-
mentation and forecasting of outcomes. The architec-
ture of a decision tree comprises several integral com-
ponents: the root node, which symbolizes the entire
dataset; internal decision nodes that signify the criteria
for data splitting; and terminal nodes, or leaf nodes,
which indicate the final decisions or classifications re-
sulting from the analysis. During the development of a
decision tree model, various evaluation metrics are em-
ployed to measure the effectiveness of the splits made
within the data.

Among the most frequently used metrics are informa-
tion entropy, information gain, and the Gini coefficient.
These metrics are essential for assessing the changes
in data purity that occur as a result of the division
process. For example, information entropy can be
mathematically expressed in a way that illustrates how
it quantifies the level of uncertainty or disorder within a
dataset before and after a split, thereby guiding the
model in making more informed decisions:

n
Entorpy(S)=— Y plog,p; )

i=1

Where S represents the current dataset, p; represents
the proportion of samples belonging to class i is denot-

ed. Information gain reflects the reduction in uncertainty
brought about by a particular feature in the dataset par-
titioning, and its formula is given by:

. 1S,
Gain(S,A) = Entorpy(S) — Z S| Entorpy(S,) (3)

veValues(A)

Here, A is the candidate feature, S, is the feature, and

the subset corresponding to the value v of feature A is
denoted.

Support Vector Machine Model Support Vector Ma-
chine (SVM) [18], as an efficient machine learning tool,
performs excellently in handling regression problems.
For the task of predicting the offset of the item drop lo-
cation in a water body, the SVM regression model can
build an accurate prediction system by minimizing the
difference between the model's predicted offset and the
actual observed value, thus enabling precise estimation
of the item drop point's shift. The basic idea is to deter-
mine an optimal hyperplane that, within a certain error
margin, positions most data points as close as possible
to the hyperplane, ensuring good generalization capa-
bility when the model predicts unknown data.

In this application scenario, the shift in the item drop
location is influenced by various factors such as water
flow speed, direction, water temperature, and other en-
vironmental variables. SVM regression introduces a
kernel function to map the input nonlinear features into
a high-dimensional space, where the best-fitting hyper-
plane is sought to effectively capture the complex non-
linear relationships between variables. Furthermore, the
model employs convex quadratic programming to en-
sure the stability of the global optimal solution and uses
slack variables and an e- insensitive loss function to
balance model complexity and prediction accuracy,
thereby enhancing robustness against outliers.

Random Forest Model The Random Forest model [19]
is an ensemble learning method. Its basic idea is to
construct a large number of randomly generated deci-
sion trees and combine the predictions from each tree
to improve the overall model's stability and generaliza-
tion ability. During the construction process, the model
reduces the risk of overfitting commonly associated with
individual decision trees by performing Bootstrap sam-
pling on the original data and randomly selecting a sub-
set of features at each node. This approach effectively
captures the underlying complex relationships within
the data[20].

To illustrate the prediction mechanism of Random
Forest, the following formula is used. For regression
problems, the final prediction result of the Random For-
est is the average of the outputs from all the decision
trees, and its mathematical expression is:

Where T represents the total number of decision
trees, and h,(x) is the prediction output of the t-th tree
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y=o Z’l, hy(x) (4)

for the input x. This formula reflects the basic idea of
reducing prediction variance through mean aggrega-
tion.

XGBoost Model XGBoost [21] is an efficient and scal-
able gradient boosting framework. lts core idea is to
build decision trees incrementally using an additive
model, minimizing prediction errors by optimizing the
objective function, while also constraining model com-
plexity to improve generalization ability and stability. In
each iteration, XGBoost uses a second-order Taylor
expansion to approximate the loss function, thereby
capturing the variation in the objective function more
accurately and accelerating the convergence rate. The
objective function of XGBoost combines training error
and a regularization term, and its expression is given by
[22]:

Where [(y;, 9(0) represents the loss value for the i-th

0bj = Y 135"+ Y () 5)

i=1 k=1

1
!Xﬁ)=yT+EﬂHwH2 (6)

13
sample, 9( )is the prediction result of the model after the
t-th iteration. The regularization term 2( f,) is used to

penalize model complexity, and y and A are the tuning
parameters for the number of leaf nodes and the
weights of the leaf nodes, respectively.

In each iteration, the model updates the overall output
by adding the prediction contribution of the new tree,
and its mathematical expression is:

Where f,(x;) represents the prediction contribution of

-1
§ =5 )

the t-th tree for the sample x;. This formula reflects the
detailed process of how XGBoost approximates the
model by progressively accumulating the outputs of
decision trees.

Evaluation Metrics This paper uses three representa-
tive evaluation metrics to assess the prediction accura-
cy: Mean Squared Error (MSE), Mean Absolute Error
(MAE), and the Coefficient of Determination. The math-
ematical expressions for these evaluation metrics are
as follows:
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Where Fi is the predicted value for the i-th data point,

1 n
MSE =~ x 2 (F,—R)? (8)
i=1
MAE = v | iR
- i=1 R; ©
n 2
Zi:l (Fl - Al)

R; is the actual value for the i-th data point, n is the se-
quence length (number of samples), and A4, is the mean
of all samples. Smaller values of MSE and MAE indi-

cate smaller prediction errors and higher accuracy. R?
takes values between 0 and 1, with a value closer to 1
indicating better fit of the neural network to the data,
thus reflecting better model fitting ability.

Experimental Design and Results Analysis

The development tool selected for this paper is Py-
Charm, with the programming language Python 3.11.0.
The Graphics Processing Unit (GPU) used is the
NVIDIA GeForce GTX 4060, and the Central Process-
ing Unit (CPU) is the i7-13600H, with 6GB of video
memory. The experiment is based on a simulation-gen-
erated dataset for prediction, where the dataset is di-
vided into 80% training data and 20% testing data for
offset prediction. The models selected for prediction
include MLP, Decision Tree, Support Vector Machine,
Random Forest, and XGBoost. The parameters for
each model are shown in the table 2-6.

This study explores the challenge of forecasting
the displacement of objects as they enter water bod-
ies, employing a comparative analysis of five dis-
tinct machine learning models: Decision Tree, Ran-
dom Forest, Support Vector Machine (SVM), Multi-
Layer Perceptron (MLP), and XGBoost. To rigorous-
ly assess the performance of these models, the
study utilizes three quantitative evaluation metrics:
Mean Absolute Error (MAE), Mean Squared Error

(MSE), and the Coefficient of Determination (R2).
The findings of this analysis are comprehensively de-
tailed in Table 7, which follows this discussion. Further-
more, the specific parameters utilized for each machine
learning model are also outlined in the accompanying
table, providing a clear understanding of the setup for
the comparisons made in this study.

The experimental results indicate that XGBoost con-
sistently surpasses all other models across all evaluat-
ed metrics. With a Mean Absolute Error (MAE) of
0.0112 and a Mean Squared Error (MSE) of 0.0002,
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Table 2 | MLP Model Parameters

Table 7 | Comparison of Evaluation Metrics for Different
Models

Parameter Name

Parameter Value

Learning Rate
Number of Iterations
Batch Size
Activation Function
Optimizer
Number of Hidden Layer Neurons
Training Set Ratio
Test Set Ratio

0.001
200
32
Relu
Adam
64
80%
20%

Table 3 | Decision Tree Model Parameters

Parameter Name

Parameter Value

Random Seed
Number of Target Variables
Number of Features
Training Algorithm
Optimizer
Minimum Samples for Splitting
Minimum Samples per Leaf

42
2
4
CART
Adam

Table 4 | Random Forest Model Parameters

Parameter Name

Parameter Value

Random Seed
Number of Target Variables
Number of Features
Number of Iterations
Bootstrap Sampling

42
2
4

200
True

Table 5 | SVM Model Parameters

Parameter Name

Parameter Value

Random Seed
Number of Target Variables
Number of Features
Number of Iterations
Kernel Coefficient
Penalty Parameter (C)

42
2
4

200

0.1

100

Table 6 | XGBoost Model Parameters

Parameter Name

Parameter Value

Random Seed
Number of Target Variables
Number of Weak Learners

Learning Rate

Maximum Tree Depth

42
2
300
0.1

Model MAE MSE R?
Decision Tree 0.0358 0.0026 0.9826
Random Forest 0.0185 0.0007 0.9953
Support Vector
pport 0.0529 0.0038  0.975
Machine
MLP 0.0522 0.0053 0.9609
XGBoost 0.0112 0.0002 0.9985
MAE
0.07
0.0529 0.0522
0.06 T '[
0.05 0.0358 l l
0.04
0.03 | 0.0185
T 0.0112
0.02
0.01 l 1
0 7 .
Decision Tree Random Forest Support \./ectm MLP XGBoost
Machine
MAE 0.0358 0.0185 0.0529 0.0522 0.0112
MSE
0.006 0.0053
0.005
0.0038
0.004
0.003 0.0026
0.002
0.0007
0.001 0.0002
0 — = o Ve —
Decision Tree  Random Forest Sllppgxl Vector MLP XGBoost
Machine
EMSE 0.0026 0.0007 0.0038 0.0053 0.0002
& MSE
R-Square
XGBoost |
vir BT ]
Support Vector Machine
Random Forest |
Decision Tree [0 ]
0.94 0.95 0.96 0.97 0.98 0.99 1 1.01
Decision Tree =~ Random Forest =~ Support Vector MLP XGBoost
Machine
OR"2 0.9826 0.9953 0.975 0.9609 0.9985

Figure 2 | Comparison Chart of Model Evaluation Met-
rics



XGBoost demonstrates markedly lower prediction er-
rors compared to its competitors, signifying superior
accuracy in estimating displacements. Furthermore, its
R? value of 0.9985, which is very close to 1, suggests
that the model accounts for 99.85% of the variance in
the data, thereby illustrating an exceptional alignment
between the predicted and actual values.

Ensemble learning models, particularly XGBoost and
Random Forest, exhibit considerable advantages when
it comes to predicting the positional displacements of
objects in aquatic environments. Their impressive accu-
racy and robust generalization capabilities arise from
their ability to collaboratively model the intricacies of
complex environmental factors. In contrast, traditional
modeling approaches such as decision trees, support
vector machines (SVMs), and shallow neural networks,
including multi-layer perceptrons (MLPs), tend to un-
derperform due to their inherent limitations in represen-
tational capacity and often ineffective training method-
ologies.

Conclusion

This study systematically evaluates the performance
of various machine learning models in predicting the
positional displacement of objects falling into water bod-
ies. Experimental results demonstrate that XGBoost,
leveraging its gradient boosting mechanism and regu-
larization strategies, significantly outperforms other
models in both error control and data fitting, making it
well-suited as the core algorithm for real-time search
systems. Random Forest, due to its ensemble robust-
ness, can serve as a complementary redundancy mod-
el. In contrast, traditional models (e.g., SVM, Decision
Tree) and shallow MLPs are limited by their nonlinear
representation capabilities, making them less adaptable
to complex hydrodynamic scenarios. These findings
provide a solid technical foundation for building intelli-
gent retrieval systems that enhance cultural tourism
safety by enabling faster and more accurate recovery of
valuable items accidentally dropped into water at popu-
lar tourist destinations.
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