Clinical Medicine & Pharmacology

press

https://doi.org/10.70731/thgpbr97

Mendelian Randomization Study Evidence on the Association between Herpes Simplex Virus Antibodies Immune Response and the Risk of Drug-Induced Obesity

Xiaoping Li a,†, Weikun Zhao b,†,*, Yanni Li b, Hong Chen b

- ^a Department of Dermatology, Nanxishan Hospital of Guangxi Zhuang Autonomous Region, Guilin, Guangxi, China
- b Premium Healthcare Department, The First Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China

KEYWORDS

Mendelian Randomization

Herpes Simplex Virus, Antibody Immune Response, Drug-Induced Obesity,

ABSTRACT

This study utilized Mendelian randomization (MR) to investigate the causal link between immune response to herpes simplex virus antibodies and drug-induced obesity (DIO). Genome-wide association study (GWAS) data was analyzed using methods like Inverse Variance Weighted (IVW), MR-Egger, and Weighted Median method (WME). Effective instrumental variables were identified, showing a significant increase in DIO risk with Epstein-Barr virus ZEBRA antibody, herpes simplex virus 7 U14 antibody, herpes simplex virus type 1 IgG, and herpes simplex virus type 2 IgG seropositivity. Reverse MR analysis did not reveal a reverse causal relationship. The study provides initial evidence of the relationship between herpes simplex virus antibody immune response and DIO, contributing new theoretical insights for future understanding of DIO.

INTRODUCTION

Drug-Induced Obesity (DIO) is a metabolic dysregulation syndrome triggered by prolonged use of glucocorticoids, antipsychotics, and other medications, characterized by abnormal adipose accumulation, insulin resistance, and elevated cardiovascular risk ¹. Its prevalence has risen significantly with the widespread application of these pharmaceuticals ². Studies suggest that herpesvirus antibody immune responses may contribute to DIO pathogenesis through immunomodulatory mechanisms, though the precise pathways remain unclear ³. Human herpesviruses (HHVs), a group of latent DNA viruses including Epstein-Barr virus (EBV), HHV-6, and herpes simplex virus types 1/2 (HSV-1/2), are implicated in disrupting adipose metabolic homeostasis via persistent immune activation, potentially linking them to drug-induced adiposity ⁴⁻⁵. Proposed mechanisms involve antibody-mediated chronic

inflammation, aberrant adipocyte differentiation, and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis 6. Previous research highlights associations between EBV ZE-BRA antibody titers and metabolic disorders, yet causal relationships with DIO remain unvalidated 1. Viral proteins such as HHV-6 U14 have been shown to activate the NF-κB signaling pathway, inducing pro-inflammatory cytokines IL-6 and TNF-α 7, which may further drive DIO pathogenesis. Elevated HSV-1/2 IgG seropositivity rates in obese populations suggest latent infection may perturb drug metabolism 4. However, conventional observational studies are susceptible to confounding bias, limiting causal inference. This study employs a two-sample Mendelian randomization (MR) framework, leveraging genome-wide association study (GWAS) data to systematically investigate causal relationships between HHV antibody immune responses and DIO. Robustness of findings will be assessed through pleiotropy

[†] These authors contributed equally to this work.

^{*} Corresponding author. E-mail address: zwkguilin0925@163.com

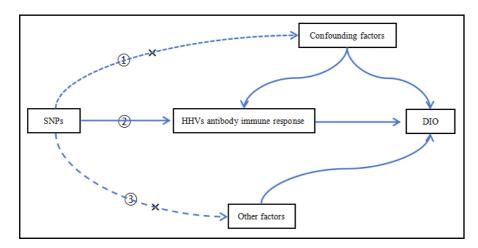


Figure 1 | Core assumptions of Mendelian randomization.

- 1) Independence assumption;
- 2) Strong association;
- 3) Exclusion restriction)

testing, heterogeneity analysis, and leave-one-out sensitivity analysis. This work aims to provide genetic evidence elucidating the role of viral immune responses in DIO etiology.

MATERIALS AND METHODS

Study Design

Leveraging GWAS summary data, we implemented a bidirectional MR framework to systematically investigate causal relationships between HHV-specific antibody responses and DIO. Single nucleotide polymorphisms (SNPs) fulfilling three core MR assumptions served as genetic instruments 8: (1) Relevance assumption: Instrumental SNPs demonstrated genome-wide significant associations ($P < 5 \times 10^{-8}$) with exposure traits (HHV-targeted IgG antibody titers); (2) Exclusion restriction: Genetic variants influenced DIO risk exclusively through antibody-mediated pathways, with horizontal pleiotropy rigorously excluded via sensitivity analyses; (3) Independence assumption: SNPs remained uncorrelated with major confounders (demographic, behavioral, or metabolic covariates). Instrument validity was confirmed through linkage disequilibrium score regression and cross-trait genetic correlation analyses. Weak instrument bias was mitigated by applying F-statistic thresholds (F > 10), ensuring robust causal estimates (Figure 1).

Data Sources

Grounded in the UK Biobank population-based cohort, this seroepidemiological investigation led by Guillaume Butler-Laporte et al. was originally reported in Open Forum Infectious Diseases ⁹. Serum samples from 8,735 White British participants underwent comprehensive profiling of IgG reactivity against seven herpesviruses: HSV-1/2, EBV, cytomegalovirus (CMV), HHV-6, HHV-7, and varicella-zoster virus (VZV). Viral antibody levels were quantified via multiplex fluorescent immunoassay (MFI), followed by log10 transformation to normalize skewed distributions. The work constitutes the largest genome-wide characterization of HHV humoral immunity, elucidating genetic determinants of herpesvirus-related non-infectious comorbidities. Genetic associations were analyzed using FinnGen R11 (https://www.finngen.fi),

a national biorepository combining whole-genome data and longitudinal health registries from 426,310 Finnish participants. Drug-induced obesity GWAS metrics were retrieved from FinnGen's curated repository (https://storage.googleapis.com/finngen-public-data-r11/summary_stats/finngen_R11_E4_OBESITYDRUG.gz), enabling large-scale genetic dissection of pharmacotherapy-related adiposity. As this study involves the analysis of previously collected and published data, no new ethics approval is required.

Instrument Selection

Instrumental SNPs were selected under genome-wide significance thresholds ($P < 5 \times 10^{-8}$), with relaxed criteria ($P < 5 \times 10^{-8}$) 1×10^{-5}) applied when candidate variants numbered below 10 to ensure statistical power. Independence between SNPs was enforced through linkage disequilibrium (LD) clumping ($r^2 <$ 0.001 within 10,000 kb genomic windows). Instrument strength was quantified using F-statistics: $F=[R^2/$ $(1-R2) \times (N-K-1)/K$, $R^2=2 \times MAF \times (1-MAF) \times (\beta/sd)^2$. Here, N denotes sample size, K the number of instruments, MAF minor allele frequency, β effect size, and SD standard deviation. Variants with F > 10 were retained to mitigate weak instrument bias 10. Allelic direction harmonization between exposure and outcome datasets excluded palindromic SNPs and discordant variants. LDlink (https://ldlink.nih.gov) further filtered SNPs showing associations with known confounders, yielding high-specificity instruments for MR analyses 11.

Statistical Analysis

Bidirectional two-sample MR was conducted using R v4.3.1 with the TwoSampleMR package (v0.5.7), modeling herpesvirus antibody responses as exposures and DIO as outcome. Primary causal estimates derived from inverse-variance weighted (IVW) meta-analysis, supplemented by: (1) Weighted median estimator (tolerating \leq 50% invalid instruments); (2) MR-Egger regression (intercept test for horizontal pleiotropy); (3) Simple/weighted mode approaches for robustness validation. Heterogeneity was assessed via Cochran's Q test (P < 0.05 triggering random-effects IVW). Pleiotropic outliers were identified through MR-Egger intercept tests and MR-PRESSO global test, with subsequent correction. Sensitivity analyses included leave-one-out iterative

Table 1 | SNPs related to EBV ZEBRA antibody levels and their associations with DIO

0112	F.4	0.1		EBV	ZEBRA antibo	dy levels		DIO	
SNPs	EA	OA	F	β	SE	p value	β	SE	p value
rs10271963	Α	Т	20	0.0752	0.0168	8.0166E-06	0.0091	0.0856	0.9157
rs1118204	С	T	45	-0.1070	0.0160	2.03117E-11	-0.0079	0.0861	0.9273
rs113103848	Α	G	22	-0.1228	0.0263	3.04318E-06	0.0007	0.1591	0.9965
rs116043458	G	Α	62	0.3762	0.0477	3.01667E-15	0.6551	0.3959	0.0980
rs116189954	Т	С	20	0.3285	0.0726	6.08169E-06	3.8318	2.2066	0.0825
rs116302426	Α	G	25	0.3117	0.0622	5.45706E-07	0.9748	0.7058	0.1673
rs11682654	С	Т	20	-0.0701	0.0156	6.78407E-06	0.0675	0.0837	0.4196
rs11715964	Т	С	20	-0.1872	0.0419	7.77388E-06	0.0259	0.1540	0.8665
rs117187370	G	Α	21	0.3086	0.0671	4.24959E-06	0.3563	0.5228	0.4956
rs11728735	Т	С	20	-0.1477	0.0329	7.08751E-06	-0.0176	0.1663	0.9155
rs11755421	Α	G	25	0.1008	0.0201	5.57401E-07	0.1367	0.0955	0.1527
rs117875419	Т	G	20	-0.2805	0.0623	6.69217E-06	-0.4951	0.5071	0.3289
rs12195665	Α	G	53	0.1269	0.0174	2.61922E-13	0.0284	0.1028	0.7820
rs1233396	Α	G	29	-0.1214	0.0224	5.6785E-08	-0.1581	0.1625	0.3304
rs1265764	Α	G	28	-0.1908	0.0360	1.14716E-07	0.0581	0.2346	0.8045
rs12962837	G	Α	20	0.1023	0.0230	8.93453E-06	-0.0404	0.1162	0.7280
rs140214797	G	Т	21	-0.2609	0.0573	5.29065E-06	-0.6678	0.3531	0.0586
rs141016096	T	С	22	-0.3662	0.0774	2.21438E-06	-0.1214	0.2258	0.5908
rs142476835	С	Т	23	-0.2304	0.0480	1.58101E-06	-0.3230	0.3204	0.3134
rs1431398	Α	G	24	-0.1124	0.0231	1.14092E-06	-0.0280	0.1139	0.8058
rs148347131	T	С	37	0.4936	0.0813	1.28875E-09	0.3964	0.2186	0.0697
rs149485984	Α	G	26	0.3801	0.0752	4.25582E-07	0.3195	1.1512	0.7813
rs150993367	T	G	21	-0.3497	0.0758	4.00156E-06	-0.4540	0.3093	0.1422
rs151302046	Α	G	20	-0.3112	0.0704	9.98621E-06	-1.0067	1.2214	0.4098
rs17039421	С	Т	20	0.1659	0.0369	6.93208E-06	-0.0654	0.1724	0.7042
rs17208314	T	С	49	0.5000	0.0712	2.20304E-12	0.7952	0.5647	0.1591
rs17219974	T	Α	30	0.3964	0.0729	5.46238E-08	-0.3836	0.2707	0.1564
rs1741740	G	Α	21	-0.0948	0.0208	5.41412E-06	-0.0358	0.1127	0.7505
rs17612503	С	G	25	0.1095	0.0219	5.47233E-07	-0.1323	0.1217	0.2769
rs181204	G	Α	20	0.0742	0.0166	7.66727E-06	0.2002	0.0851	0.0186
rs187764	T	С	31	0.1767	0.0315	2.11218E-08	0.6839	0.2647	0.0098
rs191639797	T	С	23	-0.5017	0.1037	1.31532E-06	-0.1124	0.2242	0.6162
rs206019	T	С	21	0.1070	0.0232	3.92756E-06	0.1853	0.1815	0.3071
rs2073520	G	Α	29	-0.1308	0.0244	7.9726E-08	-0.0004	0.1380	0.9979
rs2289042	Α	С	20	0.1534	0.0343	7.51917E-06	-0.0718	0.2334	0.7585
rs2516493	С	T	47	-0.1110	0.0162	8.48696E-12	-0.0536	0.0963	0.5778
rs2516670	Α	G	31	-0.1174	0.0212	2.84339E-08	-0.1827	0.1334	0.1707
rs2517600	Α	G	28	-0.0959	0.0183	1.52143E-07	0.0332	0.0925	0.7195
rs2523483	G	T	34	0.1566	0.0269	5.73191E-09	-0.1173	0.3871	0.7619
rs2535332	T	С	56	-0.1619	0.0216	6.27734E-14	0.0539	0.1490	0.7175
rs2647025	A	G	333	0.3104	0.0170	1.61203E-74	-0.0775	0.0901	0.3899
rs2735065	A	С	25	0.1778	0.0354	5.08363E-07	0.0637	0.2537	0.8018
rs28366157	G	A	75	0.2751	0.0318	5.09101E-18	0.2764	0.4628	0.5504
rs28367860	С	T	45	0.1065	0.0159	2.02206E-11	-0.0270	0.0850	0.7510
rs2844624	C	T	28	-0.0869	0.0164	1.15356E-07	-0.0007	0.0877	0.9936
rs2859090	A	G	64	-0.1494	0.0187	1.1628E-15	-0.0874	0.1044	0.4027
rs28724899	T	A	28	0.1218	0.0230	1.13102E-07	0.2473	0.1280	0.0533
rs29220	G	С	23	0.0858	0.0178	1.36788E-06	0.0710	0.0852	0.4049
rs3128853	T	С	23	-0.1753	0.0367	1.7951E-06	0.5534	0.4781	0.2471
rs3129299	T	С	53	0.1514	0.0209	4.18197E-13	-0.1103	0.1440	0.4436
rs3130177	A	G	44	0.1144	0.0172	3.13339E-11	0.0278	0.0916	0.7616
rs3131623	A	T	82	-0.1807	0.0199	1.26709E-19	0.0658	0.1384	0.6346
rs3134931	С	T	42	0.1086	0.0168	1.14595E-10	0.0358	0.1001	0.7208
rs34770282	G	A	22	-0.1221	0.0263	3.43072E-06	0.1066	0.1322	0.4199
rs35372932	T	C	30	-0.1738	0.0320	5.42543E-08	-0.3213	0.1841	0.0810
rs368652699	A	T	20	-0.1853	0.0412	7.01223E-06	0.0381	0.1901	0.8412
rs3793017	G	A	21	0.0758	0.0166	5.25759E-06	-0.0374	0.0953	0.6946
rs419788	C	T	66 35	0.1336	0.0165	5.27627E-16	-0.0087	0.0929	0.9254
rs4608857	A	G	25	-0.1950	0.0389	5.30759E-07	-0.0144	0.1942	0.9408
rs507778	T	C	92	-0.1586	0.0165	6.69324E-22	0.0478	0.0959	0.6179
rs56227443	T	A	21	0.1523	0.0333	4.7977E-06	0.0835	0.2925	0.7753
rs61782439	Т	С	20	0.1616	0.0361	7.43694E-06	-0.0103	0.1595	0.9484
rs61914229	Α	G	20	0.0905	0.0203	8.56017E-06	-0.0231	0.1113	0.8353
rs61984726	G	Α	20	0.1980	0.0448	9.72488E-06	-0.1176	0.2254	0.6018
rs62079161	T	С	20	-0.1593	0.0356	7.883E-06	-0.0660	0.2636	0.8024

OND-	-	04	-	EBV	ZEBRA antibo	dy levels		DIO	
SNPs	EA	OA	F	β	SE	p value	β	SE	p value
rs62131031	Α	G	20	-0.0986	0.0218	6.16803E-06	-0.0672	0.0942	0.4755
rs6457714	Α	Т	36	-0.1146	0.0192	2.30008E-09	-0.0416	0.0942	0.6588
rs6467	Α	С	21	0.0757	0.0164	4.11625E-06	0.1509	0.0845	0.0743
rs6904786	Α	С	36	0.1521	0.0252	1.52135E-09	-0.0350	0.1800	0.8458
rs6917363	Α	G	29	-0.0838	0.0157	9.21208E-08	-0.0105	0.0848	0.9010
rs72764967	Т	С	21	0.4372	0.0953	4.49127E-06	0.2264	1.1557	0.8447
rs73403149	G	Α	24	0.1752	0.0360	1.10362E-06	-0.1907	0.4543	0.6746
rs7383287	G	Α	58	-0.1433	0.0188	2.2714E-14	0.0196	0.1087	0.8567
rs75156687	Т	С	20	-0.1570	0.0349	6.78062E-06	-0.2988	0.1680	0.0754
rs75571438	G	С	20	0.1631	0.0365	7.84161E-06	0.2882	0.1637	0.0783
rs7575	Α	G	21	-0.1094	0.0238	4.17553E-06	0.3531	0.1800	0.0498
rs758778	С	Т	48	-0.1265	0.0182	3.47841E-12	-0.0357	0.1162	0.7589
rs7750106	Α	С	21	-0.1671	0.0365	4.60036E-06	0.1973	0.2038	0.3331
rs78793798	G	Α	22	0.1891	0.0406	3.28592E-06	-0.0837	0.5550	0.8802
rs858990	G	Α	20	0.0961	0.0218	9.98265E-06	0.1377	0.1320	0.2966
rs869836	G	Α	21	0.0740	0.0162	4.94144E-06	-0.0138	0.0892	0.8769
rs9276710	С	Т	67	-0.1564	0.0191	2.62533E-16	0.0850	0.1027	0.4081
rs9276873	G	С	31	-0.0911	0.0162	2.03609E-08	-0.0426	0.0901	0.6368
rs9391892	Α	G	24	0.1932	0.0392	7.99557E-07	0.4748	0.2576	0.0653
rs9393926	Α	G	23	0.1136	0.0236	1.51961E-06	0.0990	0.1898	0.6019
rs9505086	С	Т	21	-0.0723	0.0159	5.47732E-06	0.0129	0.0841	0.8778
rs9790601	G	Α	24	-0.0813	0.0165	8.32681E-07	-0.0178	0.0886	0.8407

Exposures_Outcome	Used_SNPs	beta		OR (95% CI)	P-value
EBV ZEBRA antibody on DIO)				
MR Egger	87	0.2373	<u> </u>	1.2678 (0.8190 - 1.9625)	0.2902
Weighted median	87	0.0736	<u> </u>	1.0764 (0.8008 - 1.4469)	0.6256
IVW	87	0.2421	ļ—•—	1.2739 (1.0438 - 1.5547)	0.0172
Simple mode	87	-0.0237	⊢	0.9765 (0.5292 - 1.8021)	0.9397
Weighted mode	87	-0.0898	⊢	0.9142 (0.5869 - 1.4240)	0.6924
		Г 0	0.5 1 1.5 2	2	

Figure 2 | Causal Relationship between EBV ZEBRA Antibody Levels and DIO

testing and palindromic SNP exclusion to prevent strand ambiguity. Results were reported as odds ratios (ORs) with 95% confidence intervals (CIs), visualized through forest plots and scatter diagrams. Statistical significance threshold was set at P < 0.05.

RESULTS

Causal Relationship Between EBV ZEBRA Antibody Levels and DIO

Instrumental Variables: Based on the criteria outlined in section "1.3 Instrumental Variable Selection" of this study, a total of 87 SNPs were selected as instrumental variables for subsequent MR analysis (**Table 1**).

MR Analysis and Sensitivity Analysis: Heterogeneity was assessed using the IVW method, with the Cochran's *Q* test yielding a *Q* value of 86 and a *P* value of 0.8060. Therefore, a random-effects model was chosen, indicating that the selected SNPs did not exhibit significant heterogeneity. Furthermore, the funnel plot further supported the conclusion of

no heterogeneity (**Figure 5**). The IVW analysis resulted in an OR of 1.2739, 95% CI (1.0438 ~ 1.5547), P = 0.0172 (**Figure 2**). The scatter plot and forest plot also confirmed these results (**Figure 3** and **Figure 4**). The intercept P-value of the MR-Egger regression analysis was 0.9806, indicating no horizontal pleiotropy. Sensitivity analysis conducted using the leave-one-out method showed that individual SNPs did not significantly influence the outcome (**Figure 6**). In conclusion, there is a causal effect between EBV ZEBRA antibody levels and DIO. Furthermore, when DIO was considered as the exposure and EBV ZEBRA antibody levels as the outcome, no reverse causal relationship was found.

Causal Relationship Between HHV-7 U14 Antibodies and DIO

Based on the criteria outlined in section "1.3 Instrumental Variable Selection" of this study, a total of 28 SNPs were selected as instrumental variables for subsequent MR analysis (**Table 2**).

To assess heterogeneity, MR analysis was conducted using the IVW method, and the Cochran's Q test yielded a Q value

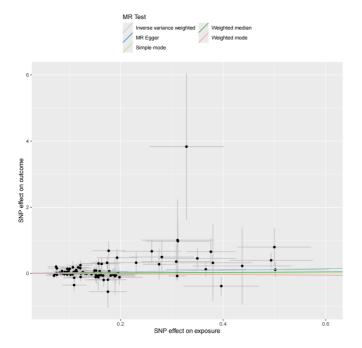


Figure 3 | Scatter Plot of MR Results

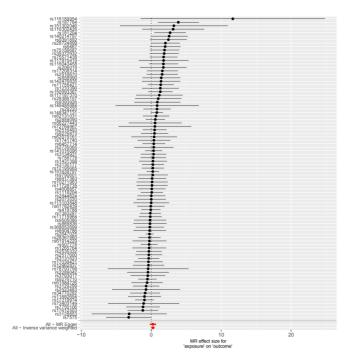


Figure 4 | Forest Plot of MR Results

of 27 and a P value of 0.2089, supporting the selection of a random-effects model, indicating no significant heterogeneity among the included SNPs. Furthermore, funnel plot analysis further confirmed the conclusion of no significant heterogeneity (Figure 10). The IVW analysis resulted in an OR of 1.7269, 95% CI (1.1175 ~ 2.6684), and a P value of 0.0139 (Figure 7). The scatter plot and forest plot further validated this conclusion (Figure 8 and Figure 9). Additionally, the intercept P-value of the MR-Egger regression was 0.7381, indicating no horizontal pleiotropy. Sensitivity analysis using

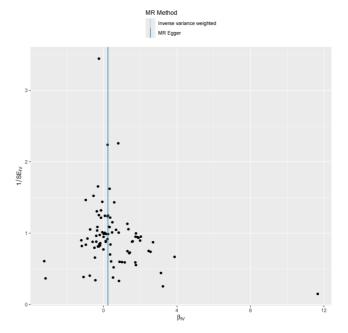


Figure 5 | Funnel Plot of MR Results

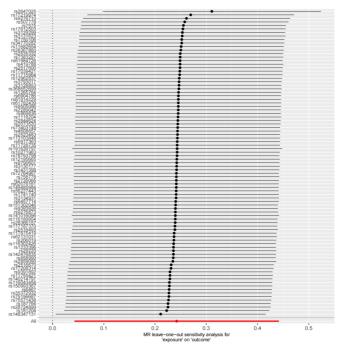


Figure 6 | MR Results "Leave-One-Out" Analysis

the leave-one-out method did not reveal any individual SNP significantly influencing the outcome (Figure 11). In summary, there is a causal effect between HHV-7 U14 antibody levels and DIO. Furthermore, when DIO was considered as the exposure and HHV-7 U14 antibody levels as the outcome, no reverse causal relationship was found.

Table 2 | SNPs related to HHV-7 U14 antibodies and their associations with DIO

SNPs	EA	0.4	OA	F	HH	V-7 U14 antiboo	dy levels		DIO	
JNPS	EA	UA	Г	β	SE	p value	β	SE	p value	
rs1053752	Α	G	27	0.0791	0.0152	1.8539E-07	0.0807	0.0861	0.3487	
rs12440425	С	Т	21	0.1763	0.0382	3.97035E-06	-0.0532	0.2178	0.8069	
rs12520297	С	Т	21	0.1664	0.0364	4.89936E-06	0.3384	0.1611	0.0356	
rs139299944	С	С	48	-0.1119	0.0161	3.94764E-12	-0.0528	0.0838	0.5284	
rs139382385	С	С	20	0.1814	0.0409	9.01817E-06	-0.1066	0.1753	0.5433	
rs141657353	G	Α	20	0.3194	0.0718	8.69267E-06	0.4045	0.3785	0.2852	
rs17612590	Α	G	35	0.0950	0.0161	3.52182E-09	-0.0334	0.0835	0.6891	
rs180067	Α	G	24	-0.1959	0.0397	8.14021E-07	0.2199	0.2357	0.3509	
rs1808192	G	Α	33	0.0934	0.0164	1.14716E-08	-0.0522	0.0851	0.5396	
rs26515	Т	С	20	0.0703	0.0155	6.00012E-06	0.0894	0.0836	0.2846	
rs2857149	G	Α	31	-0.0922	0.0167	3.18126E-08	-0.1448	0.0850	0.0885	
rs2900649	Α	G	23	-0.1642	0.0342	1.60444E-06	-0.1011	0.1563	0.5178	
rs3130192	Т	С	22	-0.1252	0.0268	3.03625E-06	-0.1362	0.1062	0.1995	
rs33998906	Т	С	22	0.1453	0.0310	2.8537E-06	0.1173	0.2297	0.6095	
rs361725	С	Т	23	0.0759	0.0157	1.39093E-06	-0.0882	0.0891	0.3221	
rs4648052	Т	G	21	-0.0727	0.0157	3.57369E-06	-0.0739	0.0857	0.3885	
rs505533	С	Α	28	-0.1017	0.0191	9.47144E-08	0.1104	0.0961	0.2509	
rs7185701	G	Α	22	-0.1067	0.0226	2.25899E-06	0.1573	0.1146	0.1702	
rs7347914	G	С	22	0.1439	0.0304	2.15981E-06	0.6808	0.2780	0.0143	
rs75438046	Α	G	34	-0.2759	0.0474	5.75016E-09	0.0293	0.3732	0.9374	
rs75944971	T	С	20	-0.1646	0.0364	6.05415E-06	-0.1771	0.2128	0.4052	
rs7773105	G	Α	37	-0.1157	0.0191	1.38075E-09	-0.0647	0.0931	0.4867	
rs79984539	G	Α	23	-0.1622	0.0336	1.34424E-06	-0.1266	0.2268	0.5768	
rs805282	G	Т	26	-0.0899	0.0176	3.29366E-07	-0.2115	0.0842	0.0120	
rs810057	С	Т	20	-0.0719	0.0162	8.87112E-06	-0.0217	0.0838	0.7952	
rs9313148	С	G	20	-0.0965	0.0218	9.60263E-06	-0.2585	0.1322	0.0506	
rs9826169	Т	С	21	-0.0930	0.0203	4.72228E-06	-0.0084	0.1319	0.9492	
rs9848627	С	Т	20	-0.0712	0.0161	9.29606E-06	-0.1365	0.0897	0.1284	

Exposures_Outcome	Used_SNPs	beta		OR (95% CI)	P-value
HHV-7 U14 antibody on DIO					
MR Egger	28	0.312	├	1.3661 (0.3272 - 5.7044)	0.6723
Weighted median	28	0.5553	 	1.7424 (0.9662 - 3.1422)	0.0649
IVW	28	0.5463		1.7269 (1.1175 - 2.6684)	0.0139
Simple mode	28	0.8257	<u> </u>	2.2835 (0.7036 - 7.4115)	0.1805
Weighted mode	28	0.7313	⊢	2.0778 (0.7104 - 6.0768)	0.1928
		0	0.5 1 1.5 2	!	

Figure 7 | Causal Relationship between HHV-7 U14 Antibody Levels and DIO

Causal Relationship Between HSV-1 IgG Seropositivity and DIO

Based on the criteria outlined in section "1.3 Instrumental Variable Selection" of this study, a total of 17 SNPs were selected as instrumental variables for subsequent MR analysis (**Table 3**).

To assess heterogeneity, an MR analysis was conducted using the IVW method, and the Cochran's Q test yielded a Q value of 16 and a P value of 0.6401, supporting the selection of a random-effects model, indicating no significant heterogeneity among the included SNPs. Furthermore, funnel plot analysis further confirmed the conclusion of no significant heterogeneity (**Figure 15**). The IVW an

alysis resulted in an OR of 1.3312, 95% CI (1.0332 ~ 1.7153), and a P value of 0.0270 (**Figure 12**). The scatter plot and forest plot further validated this conclusion (**Figure 13** and **Figure 14**). Additionally, the intercept P-value of the MR-Egger regression was 0.3523, indicating no horizontal

pleiotropy. Sensitivity analysis using the leave-one-out method did not reveal any individual SNP significantly influencing the outcome (**Figure 16**). In summary, there is a causal effect between HSV-1 IgG significantly and DIO. Furthermore, when DIO was considered as the exposure and HSV-1 IgG significantly as the outcome, no reverse causal relationship was found.

Causal Relationship Between HSV-2 IgG Seropositivity and DIO

Based on the criteria outlined in section "1.3 Instrumental Variable Selection" of this study, a total of 16 SNPs were selected as instrumental variables for subsequent MR analysis (**Table 4**).

To assess heterogeneity, an MR analysis was conducted using the IVW method, and the Cochran's Q test yielded a Q value of 15 and a P value of 0.5386, supporting the selection of a random-effects model, indicating no significant hetero-

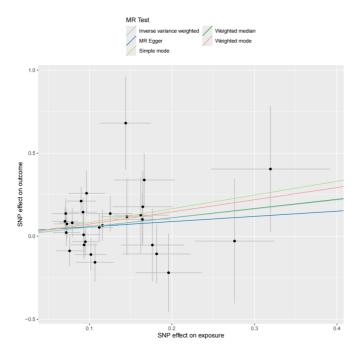


Figure 8 | Scatter Plot of MR Results

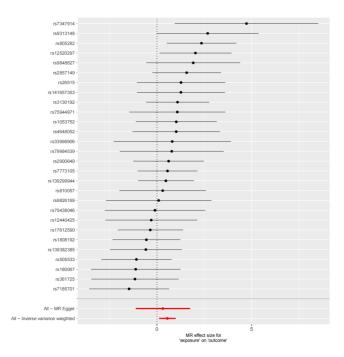


Figure 9 | Forest Plot of MR Result

geneity among the included SNPs. Furthermore, funnel plot analysis further confirmed the conclusion of no significant heterogeneity (**Figure 20**). The IVW analysis resulted in an OR of 1.7269, 95% CI (1.1175 ~ 2.6684), and a P value of 0.0139 (**Figure 17**). The scatter plot and forest plot further validated this conclusion (**Figure 18** and **Figure 19**). Additionally, the intercept P-value of the MR-Egger regression was 0.4080, indicating no horizontal pleiotropy. Sensitivity analysis using the leave-one-out method did not reveal any individual SNP significantly influencing the outcome (**Figure**

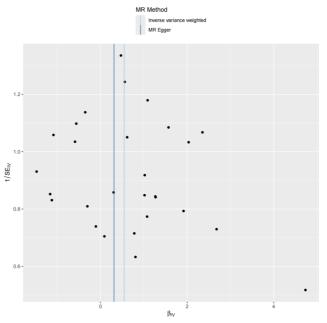


Figure 10 | Funnel Plot of MR Results

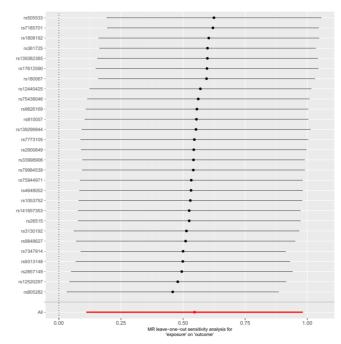


Figure 11 | MR Results "Leave-One-Out" Analysis

21). In summary, there is a causal effect between HSV-2 IgG seropositivity and DIO. Furthermore, when DIO was considered as the exposure and HSV-2 IgG seropositivity as the outcome, no reverse causal relationship was found.

DISSCUSION

This study explores the causal relationship between HHVs antibody immune response and DIO. The research findings indicate a significant positive correlation between EBV ZE-

CNDo	EA	04	F	HS	V-1 IgG seropo	ositivity		DIO	
SNPs	EA	OA	r	β	SE	p value	β	SE	p value
rs10283891	С	Т	23	0.1938	0.0406	1.83483E-06	0.0717	0.1035	0.4885
rs10898480	G	Α	20	-0.3058	0.0690	9.32289E-06	-0.0693	0.2123	0.7442
rs111494201	Α	G	20	-0.5352	0.1210	9.64078E-06	-0.3082	0.3777	0.4146
rs1117513	G	Т	20	-0.2586	0.0572	6.24857E-06	-0.3213	0.1494	0.0315
rs143000632	Т	Т	20	-0.4225	0.0933	6.00378E-06	-0.2451	0.2235	0.2728
rs148961785	Α	Α	24	-0.7739	0.1569	8.0944E-07	-0.3869	0.4375	0.3765
rs199741519	Т	Т	27	-0.6142	0.1193	2.61146E-07	-0.2988	0.3279	0.3621
rs28677033	Т	G	20	0.1725	0.0386	7.64934E-06	0.2279	0.0881	0.0096
rs34811474	Α	G	23	-0.1890	0.0393	1.52578E-06	-0.0687	0.1001	0.4924
rs4792444	Α	G	21	0.2442	0.0535	5.08676E-06	-0.0053	0.1862	0.9771
rs4801449	С	G	24	-0.2129	0.0437	1.12621E-06	0.1559	0.1247	0.2114
rs57069894	Т	С	20	-0.4089	0.0903	5.97173E-06	-0.0506	0.1737	0.7709
rs61940663	Т	G	25	-0.5464	0.1083	4.55367E-07	-0.1269	0.2644	0.6314
rs72681141	G	Α	23	-0.3581	0.0747	1.61905E-06	-0.0426	0.1689	0.8010
rs73209430	Т	С	20	-0.3677	0.0820	7.31895E-06	-0.0694	0.2152	0.7470
rs78861723	G	Α	23	-0.3490	0.0728	1.63933E-06	0.0394	0.1473	0.7893
rs9616098	Α	G	23	-0.5830	0.1217	1.66167E-06	0.1717	0.2874	0.5502

Table 3 | SNPs related to HSV-1 IgG seropositivity and their associations with DIO

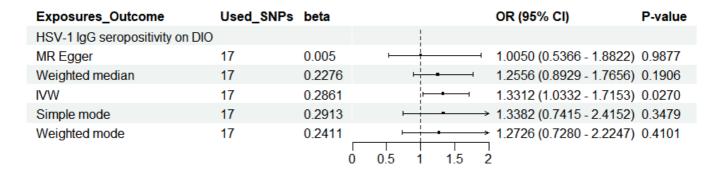


Figure 12 | Causal Relationship between HSV-1 IgG significantly and DIO

BRA antibody, HHV-7 U14 antibody, HSV-1 IgG positive, and HSV-2 IgG positive, and the elevated risk of DIO. This finding provides new evidence to some extent for a deeper understanding of the potential pathophysiological mechanisms of HHVs antibody immune response in DIO.

Members of the HHVs family, such as EBV, HHV-7, and HSV-1/2, may play a crucial role in the pathophysiological processes of various diseases because of their latency and sustained activation of the host immune system. The study suggests that these viruses not only directly lead to tissue damage and clinical diseases, but also impact the host's health status through indirect pathways such as immune regulation and metabolic reprogramming ¹².

EBV's encoded ZEBRA protein regulates DNA methylation-dependent transcriptional activation ¹³ and mediates DNA damage signals, governing the virus' latent-lytic cycle switch and serving as a key molecular switch in EBV pathogenesis. In DIO, ZEBRA antibodies may induce host immune metabolic disorders ¹⁴ and EBERs-mediated innate immune signal dysregulation, exacerbating adipose tissue inflammation and metabolic abnormalities. Additionally, as a biomarker for EBV-related tumors such as nasopharyngeal carcinoma ¹⁵, the persistent presence of EBV antibodies may promote tumor microenvironment reshaping through immune editing. Therefore, the EBV ZEBRA antibody response may be involved in the pathogenesis of DIO through multiple mecha-

nisms. However, there is limited direct research on the association between EBV ZEBRA antibodies and DIO domestically and internationally. This study confirms that EBV ZEBRA antibodies are one of the risk factors for DIO.

Furthermore, this study also found a positive correlation between HHV-7 U14 antibodies and DIO. HHV-7 is associated with various human diseases, including febrile syndromes, skin lesions, neurological defects, and transplant complications ¹⁶. Despite being a com

mon human virus, the specific role of HHV-7 in the pathogenesis of DIO remains unclear. It is speculated to be related to the following mechanisms: (1) activation of the NF- κ B signaling pathway leading to the upregulation of pro-inflammatory cytokines (such as IL-6, TNF- α), inducing chronic inflammation in adipose tissue and interfering with lipid/glucose metabolism, directly driving obesity-related metabolic imbalance ^{6, 17}; (2) synergistic infection with HHV-6 exacerbating immune-metabolic dysregulation, forming a virus-host interaction network that promotes obesity ¹⁸⁻¹⁹; (3) HHV-7-mediated abnormal activation of the HPA axis may disrupt energy homeostasis through neuroendocrine pathways, promoting increased appetite and fat accumulation ²⁰.

Additionally, the association between HSV infection and obesity involves multiple pathological mechanisms: the seropositivity of HSV-1 is significantly higher in obese adults, and its infection can induce neuroinflammation and

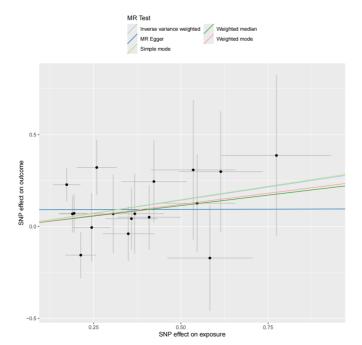


Figure 13 | Scatter Plot of MR Results

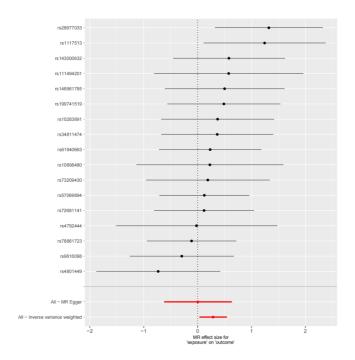


Figure 14 | Forest Plot of MR Results

oxidative stress to promote the progression of Alzheimer's disease ²¹⁻²³, as well as interfere with cholesterol metabolism leading to lipid accumulation, creating an obesogenic microenvironment ^{4, 21}; while HSV-2 infection exacerbates immune-metabolic dysregulation through ASC-dependent inflammasome activation ²⁴ and autophagy abnormalities ²⁵, contributing to a vicious cycle of obesity-related chronic lowgrade inflammation. Research on the association of HSV-1 and HSV-2 IgG positivity with DIO is relatively limited. However, this study found a significant correlation between

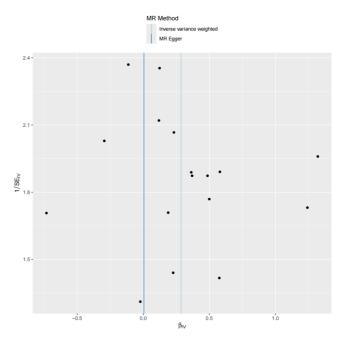


Figure 15 | Funnel Plot of MR Results

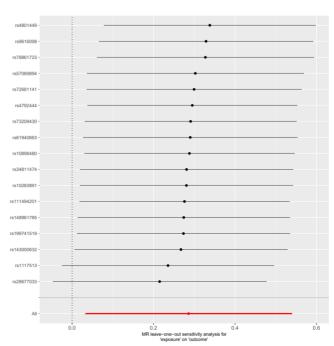


Figure 16 | MR Results "Leave-One-Out" Analysis

HSV-1 IgG and HSV-2 IgG positivity and the risk of DIO, pointing towards directions for further in-depth research.

This study, based on a two-sample MR design, utilized genetic data from GWAS public databases to select SNPs strongly associated with the exposure factors and meeting the assumptions of independence and exclusion restrictions as instrumental variables. This approach effectively controlled potential confounding biases related to environmental exposures and social behaviors, ensuring the robustness of causal effect estimates. The study employed the IVW method as the

Table 4 | SNPs related to HSV-2 IgG seropositivity and their associations with DIO

SNPs	EA	OA		HS	V-2 IgG serop	ositivity		DIO	
SINFS	EA	UA	г .	β	SE	p value	β	SE	p value
rs113345377	G	Α	21	0.9950	0.2185	5.27712E-06	0.4384	0.2124	0.3516
rs114258283	Α	G	23	0.8091	0.1674	1.34731E-06	0.0507	0.8898	0.3660
rs11568050	С	T	20	0.6422	0.1439	8.05438E-06	-0.1348	0.6248	0.2757
rs118014610	Α	С	20	0.7740	0.1728	7.45298E-06	-1.0351	0.1616	0.7395
rs12514634	G	Α	21	0.1919	0.0420	4.89137E-06	0.2240	0.0052	0.0801
rs12515138	С	T	22	-0.3457	0.0745	3.45346E-06	-0.0638	0.6791	0.1542
rs148736746	Т	С	21	1.1821	0.2599	5.43251E-06	0.3022	0.5398	0.4929
rs201862459	Α	Α	20	0.4951	0.1101	6.86614E-06	0.1038	0.6740	0.2468
rs4322800	G	T	20	-0.2214	0.0500	9.46708E-06	-0.1290	0.1974	0.1001
rs4683063	Т	С	20	0.2280	0.0509	7.54209E-06	0.0216	0.8248	0.0976
rs56368930	С	G	21	1.1608	0.2520	4.10794E-06	0.5372	0.1660	0.3878
rs62406531	G	С	21	-0.2269	0.0495	4.58868E-06	-0.0410	0.6921	0.1036
rs72880063	G	T	20	0.3353	0.0752	8.33249E-06	0.1018	0.4637	0.1389
rs7503464	Α	G	35	-0.2489	0.0422	3.75456E-09	0.0816	0.3320	0.0841
rs7979797	Т	С	22	0.2090	0.0449	3.33173E-06	0.1042	0.3026	0.1011
rs816208	Α	G	20	-0.1968	0.0437	6.65925E-06	-0.0971	0.2637	0.0869

Exposures_Outcome	Used_SNPs	beta		OR (95% CI)	P-value
HSV-2 IgG seropositivity on DI	Ю				
MR Egger	16	0.1017	<u> </u>	1.1070 (0.7240 - 1.6926)	0.6461
Weighted median	16	0.2555	i -	1.2912 (0.9742 - 1.7112)	0.0753
IVW	16	0.2625	ļ— - —	1.3002 (1.0551 - 1.6023)	0.0138
Simple mode	16	0.2897	- -	1.3361 (0.8362 - 2.1346)	0.2443
Weighted mode	16	0.331	⊢ 	1.3923 (0.8627 - 2.2472)	0.1954
			0 0.5 1 1.5 2] <u>2</u>	

Figure 17 | Causal Relationship between HSV-2 IgG seropositivity and DIO

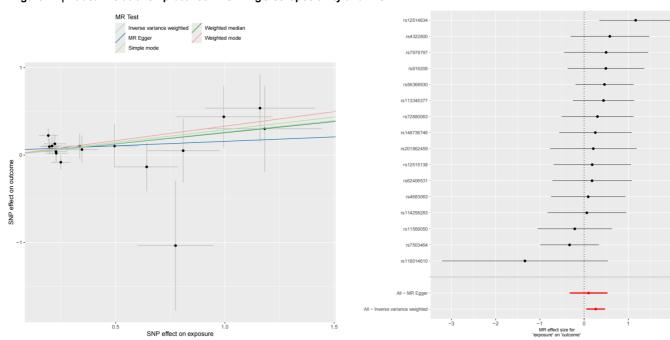


Figure 18 | Scatter Plot of MR Results

main analytical approach, complemented by methods such as the weighted median method and MR-Egger regression for multidimensional sensitivity analysis, significantly enhancing the statistical power and biological plausibility of causal inference.

Figure 19 | Forest Plot of MR Results

However, this study has certain limitations. Firstly, due to the limited coverage of genetic loci in existing GWAS data, the selection criteria for some exposure-related SNPs were relaxed to $P < 1 \times 10^{-5}$, potentially introducing weak instrument bias or horizontal pleiotropy effects. Secondly, the analysis data predominantly originated from individuals of

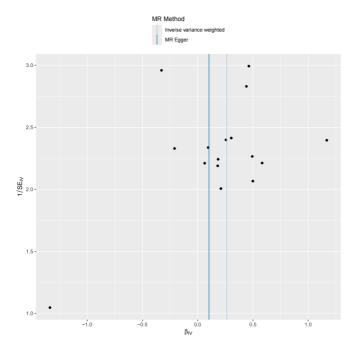


Figure 20 | Funnel Plot of MR Results

European descent, not encompassing genetic heterogeneity across different races or regions, thus requiring further validation for the generalizability of conclusions. Additionally, the study did not explore potential moderating effects of factors such as gender and age on causal associations, which may impact the depth of mechanistic analysis in precision medicine scenarios.

In conclusion, there is a positive causal relationship between HHVs-specific antibody immune responses and DIO, with EBV ZEBRA antibody, HHV-7 U14 antibody, HSV-1 IgG, and HSV-2 IgG seropositivity potentially serving as risk factors for DIO. This suggests that virus-mediated chronic immune activation may be involved in the pathogenesis of DIO.

Funding This work was supported by the Guangxi Natural Science Foundation (2025GXNSFHA069077), and the Guangxi Zhuang Autonomous Region Administration of Traditional Chinese Medicine Self-funded Research Project (GXZYC20240258; GXZYC20240401).

References

- Verhaegen, A. A., & Van Gaal, L. F. Drug-induced obesity and its metabolic consequences: a review with a focus on mechanisms and possible therapeutic options. *J. Endocrinol. Invest.* 40, 1165–1174 (2017)
- Müller, T. D., Blüher, M., Tschöp, M. H., & DiMarchi, R. D. Anti-obesity drug discovery: advances and challenges. *Nat. Rev. Drug. Discov.* 21, 201–223 (2022).
- Krawczyk, A. et al. Overcoming drug-resistant herpes simplex virus (HSV) infection by a humanized antibody. Proc. Natl. Acad. Sci. U. S. A. 110, 6760–6765 (2013).
- Hasan, M. R. et al. Virome-wide serological profiling reveals association of herpesviruses with obesity. Sci. Rep. 11, 2562 (2021).
- Freuer, D. et al. Seropositivity of selected chronic infections and different measures of obesity. PloS. One. 15, e0231974 (2020).
- Bassols, J., Moreno, J. M., Ortega, F., Ricart, W., & Fernandez-Real, J.
 M. Characterization of herpes virus entry mediator as a factor linked to

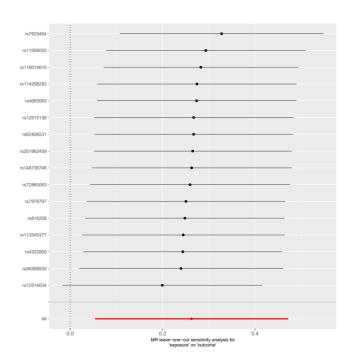


Figure 21 | MR Results "Leave-One-Out" Analysis

- obesity. Obesity. (Silver. Spring.). 18, 239-246 (2010).
- Aktar, S., Arii, J., Tjan, L. H., Nishimura, M., & Mori, Y. Human herpesvirus 6A tegument protein U14 induces NF-κB signaling by interacting with p65. *J. Virol.* 95, e0126921 (2021).
- 8. Burgess, S. *et al.* Guidelines for performing Mendelian randomization investigations: update for summer 2023. *Wellcome. Open. Res.* **4**, 186 (2023).
- Butler-Laporte, G., Kreuzer, D., Nakanishi, T., Harroud, A., Forgetta, V., & Richards, J. B. Genetic determinants of antibody-mediated immune responses to infectious diseases agents: a genome-wide and hla association study. *Open. Forum. Infect. Dis.* 7, ofaa450 (2020).
- Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods. Med. Res. 21, 223– 242 (2012).
- Lin, S. H., Brown, D. W., & Machiela, M. J. LDtrait: an online tool for identifying published phenotype associations in linkage disequilibrium. *Cancer. Res.* 80, 3443–3446 (2020).
- 12. Zamora M. R. DNA viruses (CMV, EBV, and the herpesviruses). Semin. Respir. Crit. Care. Med. 32, 454–470 (2011).
- Bernaudat, F., et al. Structural basis of DNA methylation-dependent site selectivity of the Epstein-Barr virus lytic switch protein ZEBRA/Zta/ BZLF1. Nucleic. Acids. Res. 50, 490–511 (2022).
- Zhang L. A common mechanism links Epstein-Barr virus infections and autoimmune diseases. J. Med. Virol. 95, e28363 (2023).
- Song, L. et al. Identification of anti-Epstein-Barr virus (EBV) antibody signature in EBV-associated gastric carcinoma. Gastric. Cancer. 24, 858–867 (2021).
- Verbeek, R., Vandekerckhove, L., & Van Cleemput, J. Update on human herpesvirus 7 pathogenesis and clinical aspects as a roadmap for future research. *J. Virol.* 98, e0043724 (2024).
- Zhang, Y. et al. Neuregulin4 acts on hypothalamic ErBb4 to excite oxytocin neurons and preserve metabolic homeostasis. Adv. Sci. (Weinh). 10, e2204824 (2023).
- Cao, L. et al. Immune mechanisms in multiple sclerosis: CD3 levels on CD28+ CD4+ T cells link antibody responses to human herpesvirus 6. Cytokine. 187, 156866 (2025).
- Darvish Molla, Z., Kalbasi, S., Kalantari, S., Bidari Zerehpoosh, F., Shayestehpour, M., & Yazdani, S. Evaluation of the association between human herpes virus 6 (HHV-6) and Hashimoto's thyroiditis. *Iran. J. Microbiol.* 14, 563–567 (2022).
- Kobayashi, N. et al. Human herpesvirus 6B greatly increases risk of depression by activating hypothalamic-pituitary -adrenal axis during latent phase of infection. iScience. 23, 101187 (2020).

12 | Research Article

- Salgado, B. *et al*. Cholesterol modulation attenuates the AD-like phenotype induced by herpes simplex virus type 1 infection. *Biomolecules*. 14, 603 (2024).
- Piacentini, R., & Grassi, C. Interleukin 1β receptor and synaptic dysfunction in recurrent brain infection with Herpes simplex virus type-1.
 Neural. Regen. Res. 20, 416–423 (2025).
- Asakura, M. et al. Elevated cerebrospinal fluid IgG index in herpes simplex encephalitis post-HSV-1 clearance: A preliminary study. J. Med. Virol. 96, e29850 (2024).
- Hayes, C. K., Wilcox, D. R., Yang, Y., Coleman, G. K., Brown, M. A., & Longnecker, R. ASC-dependent inflammasomes contribute to immunopathology and mortality in herpes simplex encephalitis. *PLoS. Pathog.* 17(2), e1009285 (2021).
- Hait, A. S. et al. Defects in LC3B2 and ATG4A underlie HSV2 meningitis and reveal a critical role for autophagy in antiviral defense in humans. Sci. Immunol. 5, eabc2691 (2020).